Department of Orthopedic Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
Small. 2020 Jun;16(22):e1905820. doi: 10.1002/smll.201905820. Epub 2020 Apr 27.
Poly(lactide-co-glycolide) (PLGA) has been widely used as a tissue engineering scaffold. However, conventional PLGA scaffolds are not injectable, and do not support direct cell encapsulation, leading to poor cell distribution in 3D. Here, a method for fabricating injectable and intercrosslinkable PLGA microribbon-based macroporous scaffolds as 3D stem cell niche is reported. PLGA is first fabricated into microribbon-shape building blocks with tunable width using microcontact printing, then coated with fibrinogen to enhance solubility and injectability using aqueous solution. Upon mixing with thrombin, firbornogen-coated PLGA microribbons can intercrosslink into 3D scaffolds. When subject to cyclic compression, PLGA microribbon scaffolds exhibit great shock-absorbing capacity and return to their original shape, while conventional PLGA scaffolds exhibit permanent deformation after one cycle. Using human mesenchymal stem cells (hMSCs) as a model cell type, it is demonstrated that PLGA μRB scaffolds support homogeneous cell encapsulation, and robust cell spreading and proliferation in 3D. After 28 days of culture in osteogenic medium, hMSC-seeded PLGA μRB scaffolds exhibit an increase in compressive modulus and robust bone formation as shown by staining of alkaline phosphatase, mineralization, and collagen. Together, the results validate PLGA μRBs as a promising injectable, macroporous, non-hydrogel-based scaffold for cell delivery and tissue regeneration applications.
聚(丙交酯-乙交酯)(PLGA)已被广泛用作组织工程支架。然而,传统的 PLGA 支架不可注射,也不支持直接细胞包封,导致 3D 中细胞分布不良。本文报道了一种制造可注射和互交联的 PLGA 微带状大孔支架作为 3D 干细胞小生境的方法。首先使用微接触印刷技术将 PLGA 制成具有可调宽度的微带状建筑模块,然后用纤维蛋白原进行涂层,以提高水溶性和可注射性。与凝血酶混合后,纤维蛋白原涂层的 PLGA 微带可以交联成 3D 支架。在经受循环压缩时,PLGA 微带支架表现出很强的吸能能力并恢复到原始形状,而传统的 PLGA 支架在经过一个循环后会发生永久变形。用人骨髓间充质干细胞(hMSCs)作为模型细胞类型,证明 PLGA μRB 支架支持均匀的细胞包封,并在 3D 中实现了细胞的良好扩展和增殖。在成骨培养基中培养 28 天后,PLGA μRB 支架上接种 hMSC 后,碱性磷酸酶染色、矿化和胶原显示出压缩模量增加和稳健的骨形成。总之,这些结果验证了 PLGA μRB 作为一种有前途的可注射、大孔、非水凝胶基细胞递送和组织再生应用支架。