Xie Jing, Zhang Xin, Shao Hua, Jing Shenqi, Shan Tao, Shi Yaxiang, Li Yong, Liu Yun, Liu Naifeng
College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
Department of Information, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
Diabetol Metab Syndr. 2022 Aug 10;14(1):113. doi: 10.1186/s13098-022-00883-0.
The β-cell function and insulin resistance required by existing methods of classifying type 2 diabetes are not routinely adopted in most medical institutions of developing countries and regions. This study aims to propose a novel, affordable classification approach and evaluate its predictive ability for several health and mortality outcomes, including cardiovascular health (CVH), retinopathy, chronic kidney disease (CKD), nonalcoholic fatty liver disease (NAFLD), advanced liver fibrosis, and mortality caused by all-cause, cardiovascular disease (CVD), cancer.
Based on 4060 participants with diabetes (aged ≥ 30 at the time of diagnosis) selected from the National Health and Nutrition Examination Survey III & 1999-2014, we proposed a novel, but simple classification approach based on the threshold of fasting plasma glucose (FPG), triglyceride-glucose (TyG) index and body mass index (BMI). We used logistic regression model to assess its predictability for diabetes complications, and Cox regression model to estimate the mortality risks.
By utilizing this approach, we characterized the subjects into four subgroups: subgroup A (obesity-related), which accounts for 37% of the total, subgroup B (age-related), 38%, subgroup C (insulin resistance), 20%, and subgroup D (severe insulin deficiency), 5%. Subjects in subgroup D had a higher risk of retinopathy, in subgroup B had a lower risk of poor cardiovascular health, nonalcoholic fatty liver disease, and advanced liver fibrosis, in subgroup C had a higher risk of all-cause mortality.
This study proposes an affordable and practical method for classifying patients with type 2 diabetes into different subgroups, with a view to yield a high predictability of patient outcomes and to assist clinicians in providing better treatment.
发展中国家和地区的大多数医疗机构并未常规采用现有2型糖尿病分类方法所需的β细胞功能和胰岛素抵抗指标。本研究旨在提出一种新颖且经济实惠的分类方法,并评估其对多种健康和死亡结局的预测能力,这些结局包括心血管健康(CVH)、视网膜病变、慢性肾脏病(CKD)、非酒精性脂肪性肝病(NAFLD)、晚期肝纤维化以及全因死亡率、心血管疾病(CVD)死亡率、癌症死亡率。
基于从第三次全国健康与营养检查调查(1999 - 2014年)中选取的4060例糖尿病患者(诊断时年龄≥30岁),我们提出了一种基于空腹血糖(FPG)阈值、甘油三酯 - 葡萄糖(TyG)指数和体重指数(BMI)的新颖但简单的分类方法。我们使用逻辑回归模型评估其对糖尿病并发症的预测能力,并使用Cox回归模型估计死亡风险。
通过采用这种方法,我们将受试者分为四个亚组:A亚组(肥胖相关),占总数的37%;B亚组(年龄相关),占38%;C亚组(胰岛素抵抗),占20%;D亚组(严重胰岛素缺乏),占5%。D亚组的受试者发生视网膜病变的风险较高,B亚组发生心血管健康不佳、非酒精性脂肪性肝病和晚期肝纤维化的风险较低,C亚组的全因死亡风险较高。
本研究提出了一种经济实惠且实用的方法,可将2型糖尿病患者分为不同亚组,以期对患者结局具有较高的预测性,并协助临床医生提供更好的治疗。