Suppr超能文献

使用机器学习开发一种用于阿片类药物过量的新型预测模型;一项试点分析研究。

Developing a novel prediction model in opioid overdose using machine learning; a pilot analytical study.

作者信息

Sakhaee Ehsan, Amirahmadi Ali, Mahdiani Morteza, Shojaei Maziar, Hassanian-Moghaddam Hossein, Bauer Roman, Zamani Nasim, Pakdaman Hossein, Gharagozli Kourosh

机构信息

Brain Mapping Research Center, Department of Neurology Shahid Beheshti University of Medical Sciences Tehran Iran.

Department of Information Technology, School of Electrical and Computer Engineering, University College of Engineering Tehran University Tehran Iran.

出版信息

Health Sci Rep. 2022 Aug 8;5(5):e767. doi: 10.1002/hsr2.767. eCollection 2022 Sep.

Abstract

BACKGROUND AND AIMS

The opioid epidemic has extended to many countries. Data regarding the accuracy of conventional prediction models including the Simplified Acute Physiologic Score (SAPS) II and acute physiology and chronic health evaluation (APACHE) II are scarce in opioid overdose cases. We evaluate the efficacy of adding quantitative electroencephalogram (qEEG) data to clinical and paraclinical data in the prediction of opioid overdose mortality using machine learning.

METHODS

In a prospective study, we collected clinical/paraclinical, and qEEG data of 32 opioid-poisoned patients. After preprocessing and Fast Fourier Transform analysis, absolute power was computed. Also, SAPS II was calculated. Eventually, data analysis was performed using SAPS II as a benchmark at three levels to predict the patient's course in comparison with SAPS II. First, the qEEG data set was used alone, secondly, the combination of the clinical/paraclinical, SAPS II, qEEG datasets, and the SAPS II-based model was included in the pool of classifier models.

RESULTS

Seven out of 32 (22%) died. SAPS II (cut-off of 50.5) had a sensitivity/specificity/positive/negative predictive values of 85.7%, 84.0%, 60.0%, and 95.5% in predicting mortality, respectively. Adding majority voting on random forest with qEEG and clinical data, improved the model sensitivity, specificity, and positive and negative predictive values to 71.4%, 96%, 83.3%, and 92.3% (not significant). The model fusion level has 40% less prediction error.

CONCLUSION

Considering the higher specificity and negative predictive value in our proposed model, it could predict survival much better than mortality. The model would constitute an indicator for better care of opioid poisoned patients in low resources settings, where intensive care unit beds are limited.

摘要

背景与目的

阿片类药物流行已蔓延至许多国家。在阿片类药物过量病例中,关于包括简化急性生理评分(SAPS)II和急性生理与慢性健康评估(APACHE)II在内的传统预测模型准确性的数据稀缺。我们使用机器学习评估将定量脑电图(qEEG)数据添加到临床和辅助临床数据中对阿片类药物过量死亡率预测的效果。

方法

在一项前瞻性研究中,我们收集了32例阿片类药物中毒患者的临床/辅助临床及qEEG数据。经过预处理和快速傅里叶变换分析后,计算绝对功率。此外,计算SAPS II。最终,以SAPS II为基准在三个层面进行数据分析,以与SAPS II比较预测患者的病程。首先,单独使用qEEG数据集,其次,将临床/辅助临床、SAPS II、qEEG数据集的组合以及基于SAPS II的模型纳入分类器模型库。

结果

32例中有7例(22%)死亡。SAPS II(截断值为50.5)在预测死亡率时的灵敏度/特异度/阳性/阴性预测值分别为85.7%、84.0%、60.0%和95.5%。将qEEG和临床数据在随机森林上进行多数投票,模型的灵敏度、特异度以及阳性和阴性预测值分别提高到71.4%、96%、83.3%和92.3%(无显著差异)。模型融合层面的预测误差降低了40%。

结论

考虑到我们提出的模型具有更高的特异度和阴性预测值,它在预测生存方面比预测死亡要好得多。该模型将成为在重症监护病房床位有限的低资源环境中更好地护理阿片类药物中毒患者的一个指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/302c/9358662/d7f194d570b3/HSR2-5-e767-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验