Kim Yeongae, Yeom Su Jeong, Yoo Jinkyoung, Yun Jeonghun, Lee Hyun-Wook, Lee Seok Woo
Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore 639798, Singapore.
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Nano Lett. 2022 Aug 24;22(16):6631-6636. doi: 10.1021/acs.nanolett.2c01946. Epub 2022 Aug 11.
During the lithation of silicon anodes, the solid-state diffusion of lithium into LiSi follows the Arrhenius law, the resulting morphology and fracture behavior are determined by the silicon anode operation temperature. Here, we reveal the temperature dependence of the lithiation mechanics of crystalline silicon nanopillars (SiNPs) via microscopic observations of the anisotropic growth and fracture behavior. We fabricated 1D SiNP structures with various orientations (⟨100⟩, ⟨110⟩, and ⟨111⟩) as working electrodes and operated them at temperatures ranging from -20 to 40 °C. The lithiation of crystalline silicon at low temperatures exhibited preferential volume expansion along ⟨110⟩ and decreased fracture resistance. Furthermore, low temperatures caused the catastrophic fracture of amorphous silicon after the second lithiation. Our findings demonstrate the importance of silicon anode temperature control to prevent mechanical fracture during the cycle of lithium-ion batteries in harsh environments (e.g., electric vehicles in winter).
在硅阳极锂化过程中,锂在LiSi中的固态扩散遵循阿仑尼乌斯定律,由此产生的形态和断裂行为由硅阳极的工作温度决定。在此,我们通过对各向异性生长和断裂行为的微观观察,揭示了晶体硅纳米柱(SiNP)锂化力学的温度依赖性。我们制备了具有不同取向(⟨100⟩、⟨110⟩和⟨111⟩)的一维SiNP结构作为工作电极,并在-20至40°C的温度范围内对其进行操作。低温下晶体硅的锂化表现出沿⟨110⟩方向的优先体积膨胀,并降低了抗断裂性。此外,低温导致非晶硅在第二次锂化后发生灾难性断裂。我们的研究结果表明,在恶劣环境(如冬季电动汽车)中,控制硅阳极温度对于防止锂离子电池循环过程中的机械断裂至关重要。