Suppr超能文献

晶体硅纳米柱在电化学锂插入过程中的断裂。

Fracture of crystalline silicon nanopillars during electrochemical lithium insertion.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4080-5. doi: 10.1073/pnas.1201088109. Epub 2012 Feb 27.

Abstract

From surface hardening of steels to doping of semiconductors, atom insertion in solids plays an important role in modifying chemical, physical, and electronic properties of materials for a variety of applications. High densities of atomic insertion in a solid can result in dramatic structural transformations and associated changes in mechanical behavior: This is particularly evident during electrochemical cycling of novel battery electrodes, such as alloying anodes, conversion oxides, and sulfur and oxygen cathodes. Silicon, which undergoes 400% volume expansion when alloying with lithium, is an extreme case and represents an excellent model system for study. Here, we show that fracture locations are highly anisotropic for lithiation of crystalline Si nanopillars and that fracture is strongly correlated with previously discovered anisotropic expansion. Contrary to earlier theoretical models based on diffusion-induced stresses where fracture is predicted to occur in the core of the pillars during lithiation, the observed cracks are present only in the amorphous lithiated shell. We also show that the critical fracture size is between about 240 and 360 nm and that it depends on the electrochemical reaction rate.

摘要

从钢的表面硬化到半导体的掺杂,原子在固体中的插入在改变材料的化学、物理和电子性质方面发挥着重要作用,适用于各种应用。在固体中高密度的原子插入可导致显著的结构转变和相关的机械行为变化:这在新型电池电极(如合金阳极、转化氧化物以及硫和氧阴极)的电化学循环过程中尤为明显。当与锂合金化时,硅的体积膨胀达到 400%,是一个极端情况,是研究的理想模型系统。在这里,我们表明,在结晶硅纳米柱的锂化过程中,断裂位置具有高度各向异性,并且断裂与先前发现的各向异性膨胀密切相关。与基于扩散诱导应力的早期理论模型相反,在锂化过程中预测断裂会发生在柱子的核心,观察到的裂缝仅存在于非晶态锂化壳中。我们还表明,临界断裂尺寸在大约 240 到 360nm 之间,并且取决于电化学反应速率。

相似文献

1
Fracture of crystalline silicon nanopillars during electrochemical lithium insertion.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4080-5. doi: 10.1073/pnas.1201088109. Epub 2012 Feb 27.
2
Temperature-Dependent Fracture Resistance of Silicon Nanopillars during Electrochemical Lithiation.
Nano Lett. 2022 Aug 24;22(16):6631-6636. doi: 10.1021/acs.nanolett.2c01946. Epub 2022 Aug 11.
3
Anomalous shape changes of silicon nanopillars by electrochemical lithiation.
Nano Lett. 2011 Jul 13;11(7):3034-9. doi: 10.1021/nl201787r. Epub 2011 Jun 9.
4
Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
Nano Lett. 2012 Sep 12;12(9):5039-47. doi: 10.1021/nl302841y. Epub 2012 Aug 20.
5
25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
Adv Mater. 2013 Sep 25;25(36):4966-85. doi: 10.1002/adma.201301795. Epub 2013 Aug 22.
6
Surface coating mediated swelling and fracture of silicon nanowires during lithiation.
ACS Nano. 2014 Sep 23;8(9):9427-36. doi: 10.1021/nn503564r. Epub 2014 Aug 25.
7
Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires.
Nano Lett. 2012 Apr 11;12(4):1953-8. doi: 10.1021/nl204437t. Epub 2012 Mar 28.
8
9
Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.
Phys Chem Chem Phys. 2015 Jul 21;17(27):17718-28. doi: 10.1039/c5cp01385b.
10
Size-dependent fracture of silicon nanoparticles during lithiation.
ACS Nano. 2012 Feb 28;6(2):1522-31. doi: 10.1021/nn204476h. Epub 2012 Jan 17.

引用本文的文献

1
Research progress of silicon-based anode materials for lithium-ion batteries.
RSC Adv. 2025 Apr 7;15(14):10731-10753. doi: 10.1039/d5ra01268f. eCollection 2025 Apr 4.
3
Threshold damage mechanisms in brittle solids and their impact on advanced technologies.
Acta Mater. 2022 Jun 15;232. doi: 10.1016/j.actamat.2022.117921. Epub 2022 Apr 10.
4
A controlled nucleation and growth of Si nanowires by using a TiN diffusion barrier layer for lithium-ion batteries.
Nanoscale Adv. 2022 Mar 9;4(8):1962-1969. doi: 10.1039/d1na00844g. eCollection 2022 Apr 12.
7

本文引用的文献

1
A major constituent of brown algae for use in high-capacity Li-ion batteries.
Science. 2011 Oct 7;334(6052):75-9. doi: 10.1126/science.1209150. Epub 2011 Sep 8.
2
Novel size and surface oxide effects in silicon nanowires as lithium battery anodes.
Nano Lett. 2011 Sep 14;11(9):4018-25. doi: 10.1021/nl202630n. Epub 2011 Aug 11.
3
Anisotropic swelling and fracture of silicon nanowires during lithiation.
Nano Lett. 2011 Aug 10;11(8):3312-8. doi: 10.1021/nl201684d. Epub 2011 Jul 1.
4
Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.
Nano Lett. 2011 Jul 13;11(7):2949-54. doi: 10.1021/nl201470j. Epub 2011 Jun 14.
5
Anomalous shape changes of silicon nanopillars by electrochemical lithiation.
Nano Lett. 2011 Jul 13;11(7):3034-9. doi: 10.1021/nl201787r. Epub 2011 Jun 9.
6
Arrays of sealed silicon nanotubes as anodes for lithium ion batteries.
Nano Lett. 2010 May 12;10(5):1710-6. doi: 10.1021/nl100086e.
7
High-performance lithium-ion anodes using a hierarchical bottom-up approach.
Nat Mater. 2010 Apr;9(4):353-8. doi: 10.1038/nmat2725. Epub 2010 Mar 14.
8
Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries.
J Am Chem Soc. 2009 Jul 8;131(26):9239-49. doi: 10.1021/ja8086278.
10
High-performance lithium battery anodes using silicon nanowires.
Nat Nanotechnol. 2008 Jan;3(1):31-5. doi: 10.1038/nnano.2007.411. Epub 2007 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验