Thomaschewski Martin, Zenin Vladimir A, Fiedler Saskia, Wolff Christian, Bozhevolnyi Sergey I
Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Nano Lett. 2022 Aug 24;22(16):6471-6475. doi: 10.1021/acs.nanolett.2c00714. Epub 2022 Aug 11.
Lithium niobate Mach-Zehnder modulators (MZMs) are present in a wide range of technologies and though fulfilling the performance and reliability requirements of present applications, they are becoming progressively too bulky, power inefficient, and slow in switching to keep pace with future technological demands. Here, we utilize plasmonics to demonstrate the most efficient (VL = 0.23 Vcm) lithium niobate MZM to date, consisting of gold nanostripes on lithium niobate that guide both plasmonic modes and electrical signals that control their relative optical phase delay, thereby enabling efficient electro-optic modulation. For high linearity (modulation depth of >2 dB), the proposed MZM inherently operates near its quadrature point by shifting the relative phase of the signal in the interferometric arms. The demonstrated lithium niobate MZM manifests the benefits of employing plasmonics for applications that demand compact (<1 mm) and fast (>10 GHz) photonic components operating reliably at ambient temperatures.
铌酸锂马赫-曾德尔调制器(MZM)存在于广泛的技术中,尽管它们满足当前应用的性能和可靠性要求,但它们正逐渐变得过于庞大、功率效率低下且切换速度缓慢,无法跟上未来技术需求的步伐。在此,我们利用等离子体技术展示了迄今为止最高效(VL = 0.23 Vcm)的铌酸锂MZM,它由铌酸锂上的金纳米条纹组成,这些条纹既能引导等离子体模式,又能引导控制其相对光学相位延迟的电信号,从而实现高效的电光调制。对于高线性度(调制深度>2 dB),所提出的MZM通过在干涉臂中移动信号的相对相位,固有地在其正交点附近工作。所展示的铌酸锂MZM体现了在需要紧凑(<1 mm)和快速(>10 GHz)光子组件且能在环境温度下可靠运行的应用中采用等离子体技术的优势。