Suppr超能文献

工作于透明区域的石墨烯相位调制器。

Graphene Phase Modulators Operating in the Transparency Regime.

作者信息

Watson Hannah F Y, Ruocco Alfonso, Tiberi Matteo, Muench Jakob E, Balci Osman, Shinde Sachin M, Mignuzzi Sandro, Pantouvaki Marianna, Van Thourhout Dries, Sordan Roman, Tomadin Andrea, Sorianello Vito, Romagnoli Marco, Ferrari Andrea C

机构信息

Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.

IMEC, Kapeldreef 75, Leuven B-3001, Belgium.

出版信息

ACS Nano. 2024 Nov 5;18(44):30269-30282. doi: 10.1021/acsnano.4c02292. Epub 2024 Oct 22.

Abstract

Next-generation data networks need to support Tb/s rates. In-phase and quadrature (IQ) modulation combine phase and intensity information to increase the density of encoded data, reduce overall power consumption by minimizing the number of channels, and increase noise tolerance. To reduce errors when decoding the received signal, intersymbol interference must be minimized. This is achieved with pure phase modulation, where the phase of the optical signal is controlled without changing its intensity. Phase modulators are characterized by the voltage required to achieve a π phase shift, , the device length, , and their product, . To reduce power consumption, IQ modulators are needed with <1 V drive voltages and compact (sub-cm) dimensions, which translate in < 1Vcm. Si and LiNbO (LN) IQ modulators do not currently meet these requirements because > 1Vcm. Here, we report a double single-layer graphene (SLG) Mach-Zehnder modulator (MZM) with pure phase modulation in the transparency regime, where optical losses are minimized and remain constant with increasing voltage. Our device has ∼ 0.3Vcm, matching state-of-the-art SLG-based MZMs and plasmonic LN MZMs, but with pure phase modulation and low insertion loss (∼5 dB), essential for IQ modulation. Our is ∼5 times lower than the lowest thin-film LN MZMs and ∼3 times lower than the lowest Si MZMs. This enables devices with complementary metal-oxide semiconductor compatible V (<1Vcm) and smaller footprint than LN or Si MZMs, improving circuit density and reducing power consumption by 1 order of magnitude.

摘要

下一代数据网络需要支持太比特每秒的速率。同相和正交(IQ)调制结合了相位和强度信息,以增加编码数据的密度,通过最小化通道数量来降低总体功耗,并提高噪声容限。为了在对接收到的信号进行解码时减少错误,必须将符号间干扰最小化。这可以通过纯相位调制来实现,即在不改变光信号强度的情况下控制其相位。相位调制器的特征在于实现π相移所需的电压、器件长度及其乘积。为了降低功耗,需要驱动电压<1V且尺寸紧凑(亚厘米级)的IQ调制器,这意味着<1Vcm。目前,硅和铌酸锂(LN)IQ调制器不符合这些要求,因为>1Vcm。在此,我们报道了一种双层单层石墨烯(SLG)马赫曾德尔调制器(MZM),它在透明区域具有纯相位调制,在该区域光损耗最小且随电压增加保持恒定。我们的器件具有约0.3Vcm,与基于SLG的先进MZM和等离子体铌酸锂MZM相当,但具有纯相位调制和低插入损耗(约5dB),这对于IQ调制至关重要。我们的比最低的薄膜铌酸锂MZM低约5倍,比最低的硅MZM低约3倍。这使得器件具有与互补金属氧化物半导体兼容的V(<1Vcm),并且比铌酸锂或硅MZM的占地面积更小,从而提高了电路密度并将功耗降低了一个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6926/11544935/b8d05c0a0177/nn4c02292_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验