Gupta Akanksha, Maruthapandi Moorthy, Das Poushali, Saravanan Arumugam, Jacobi Gila, Natan Michal, Banin Ehud, Luong John H T, Gedanken Aharon
Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel.
ACS Appl Bio Mater. 2022 Aug 11. doi: 10.1021/acsabm.2c00508.
Considering the global spread of bacterial infections, the development of anti-biofilm surfaces with high antimicrobial activities is highly desired. This work unraveled a simple, sonochemical method for coating CuO nanoparticles (NPs) on three different flexible substrates: polyester (PE), nylon 2 (N2), and polyethylene (PEL). The introduction of CuO NPs on these substrates enhanced their surface hydrophobicity, induced ROS generation, and completely inhibited the growth of sensitive ( and ) and drug-resistant (MDR and MRSA) planktonic and biofilm. The experimental results confirmed that CuO-PE exhibited complete biofilm mass reduction ability for all four strains, whereas CuO-N2 showed more than 99% biomass inhibition against both drug-resistant and sensitive pathogens in 6 h. Moreover, CuO-PEL also indicated a 99.95, 97.73, 98.00, and 99.20% biomass reduction of MRSA, MDR , , and , respectively. All substrates were investigated for time-dependent inhibitions, and the associated biofilm mass and log reduction were evaluated. The mechanisms of CuO NP action against the mature biofilms include the generation of reactive oxygen species (ROS) as well as electrostatic interaction between CuO NPs and bacterial membranes. The current study could pave the way for the commercialization of sonochemically coated CuO NP flexible substrates for the prevention of microbial contamination in hospitals and industrial environments.
考虑到细菌感染在全球范围内的传播,人们迫切需要开发具有高抗菌活性的抗生物膜表面。这项工作揭示了一种简单的声化学方法,用于在三种不同的柔性基材上涂覆氧化铜纳米颗粒(NPs):聚酯(PE)、尼龙2(N2)和聚乙烯(PEL)。在这些基材上引入氧化铜纳米颗粒增强了它们的表面疏水性,诱导了活性氧的产生,并完全抑制了敏感菌( 和 )以及耐药菌(MDR 和MRSA)浮游菌和生物膜的生长。实验结果证实,CuO-PE对所有四种菌株都具有完全的生物膜质量降低能力,而CuO-N2在6小时内对耐药菌和敏感病原体的生物量抑制率均超过99%。此外,CuO-PEL对MRSA、MDR 、 和 的生物量减少率分别为99.95%、97.73%、98.00%和99.20%。对所有基材进行了时间依赖性抑制研究,并评估了相关的生物膜质量和对数减少率。氧化铜纳米颗粒对成熟生物膜的作用机制包括活性氧(ROS)的产生以及氧化铜纳米颗粒与细菌膜之间的静电相互作用。当前的研究可为声化学涂覆氧化铜纳米颗粒柔性基材的商业化铺平道路,以预防医院和工业环境中的微生物污染。