文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

奥密克戎(B.1.1.529)- 一种新的高度突变变体:其突变的映射位置和可能的特性,重点是 S 糖蛋白。

Omicron (B.1.1.529) - A new heavily mutated variant: Mapped location and probable properties of its mutations with an emphasis on S-glycoprotein.

机构信息

Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.

Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India.

出版信息

Int J Biol Macromol. 2022 Oct 31;219:980-997. doi: 10.1016/j.ijbiomac.2022.07.254. Epub 2022 Aug 8.


DOI:10.1016/j.ijbiomac.2022.07.254
PMID:35952818
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9359758/
Abstract

Omicron, another SARS-CoV-2 variant, has been recorded and reported as a VoC. It has already spread across >30 countries and is a highly mutated variant. We tried to understand the role of mutations in the investigated variants by comparison with previous characterized VoC. We have mapped the mutations in Omicron S-glycoprotein's secondary and tertiary structure landscape using bioinformatics tools and statistical software and developed different models. In addition, we analyzed the effect of diverse mutations in antibody binding regions of the S-glycoprotein on the binding affinity of the investigated antibodies. This study has chosen eight significant mutations in Omicron (D614G, E484A, N501Y, Q493K, K417N, S477N, Y505H G496S), and seven of them are located in the RBD region. We also performed a comparative analysis of the ΔΔG score of these mutations to understand the stabilizing or destabilizing properties of the investigated mutations. The analysis outcome shows that D614G, Q493K, and S477N mutations are stable mutations with ΔΔG scores of 0.351 kcal/mol, 0.470 kcal/mol, and 0.628 kcal/mol, respectively, according to DynaMut estimations. While other mutations (E484A, N501Y, K417N, Y505H, G496S) showed destabilizing results. The D614G, E484A, N501Y, K417N, Y505H, and G496S mutations increased the molecular flexibility of S-glycoprotein to interact with the ACE2 receptor, increasing the variant's infectivity. Our study will contribute to research on the SARS-CoV-2 variant, Omicron, by providing information on the mutational pattern and exciting properties of these eight significant mutations, such as antibody escape and infectivity quotient (stabilizing or destabilizing; increased or decreased molecular flexibility of S-glycoprotein to interact with the human ACE2 receptor).

摘要

奥密克戎(Omicron)是另一种 SARS-CoV-2 变体,已被记录并报告为 VOC。它已在超过 30 个国家传播,是一种高度突变的变体。我们试图通过与以前的特征 VOC 进行比较来了解突变在研究变体中的作用。我们使用生物信息学工具和统计软件对奥密克戎 S 糖蛋白的二级和三级结构景观中的突变进行了映射,并开发了不同的模型。此外,我们分析了 S 糖蛋白抗体结合区域中不同突变对研究抗体结合亲和力的影响。本研究选择了奥密克戎中的八个重要突变(D614G、E484A、N501Y、Q493K、K417N、S477N、Y505H 和 G496S),其中 7 个位于 RBD 区域。我们还对这些突变的 ΔΔG 评分进行了比较分析,以了解研究突变的稳定或不稳定特性。分析结果表明,根据 DynaMut 估计,D614G、Q493K 和 S477N 突变分别具有 0.351 kcal/mol、0.470 kcal/mol 和 0.628 kcal/mol 的 ΔΔG 评分,是稳定的突变,而其他突变(E484A、N501Y、K417N、Y505H、G496S)显示出不稳定的结果。D614G、E484A、N501Y、K417N、Y505H 和 G496S 突变增加了 S 糖蛋白与 ACE2 受体相互作用的分子灵活性,增加了变体的感染力。我们的研究将通过提供关于这些八个重要突变的突变模式和激动特性的信息,为 SARS-CoV-2 变体奥密克戎的研究做出贡献,例如抗体逃逸和感染力指数(稳定或不稳定;增加或降低 S 糖蛋白与人类 ACE2 受体相互作用的分子灵活性)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/754f48c52377/mmc8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/bfcbea5478e8/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/d699f53452e1/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/886b89d796bf/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/9e9580322c51/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/3fbe664f3fd9/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/45be2bb3e63f/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/5db3b666cb13/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/44f71c913863/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/3d4d94204282/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/22117b9ae316/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/1f2984e80af5/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/758e409239db/gr12_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/62dc11c8ad5b/gr13_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/1af28511f838/gr14_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/7f9ff69fb061/mmc1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/af2537a530d6/mmc2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/8c72bb71cb26/mmc3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/d7e876026249/mmc4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/41b27556a5de/mmc5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/ae6289538946/mmc6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/e599b744a3a5/mmc7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/754f48c52377/mmc8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/bfcbea5478e8/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/d699f53452e1/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/886b89d796bf/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/9e9580322c51/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/3fbe664f3fd9/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/45be2bb3e63f/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/5db3b666cb13/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/44f71c913863/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/3d4d94204282/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/22117b9ae316/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/1f2984e80af5/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/758e409239db/gr12_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/62dc11c8ad5b/gr13_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/1af28511f838/gr14_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/7f9ff69fb061/mmc1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/af2537a530d6/mmc2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/8c72bb71cb26/mmc3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/d7e876026249/mmc4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/41b27556a5de/mmc5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/ae6289538946/mmc6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/e599b744a3a5/mmc7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/9359758/754f48c52377/mmc8_lrg.jpg

相似文献

[1]
Omicron (B.1.1.529) - A new heavily mutated variant: Mapped location and probable properties of its mutations with an emphasis on S-glycoprotein.

Int J Biol Macromol. 2022-10-31

[2]
Omicron variant (B.1.1.529) of SARS-CoV-2: understanding mutations in the genome, S-glycoprotein, and antibody-binding regions.

Geroscience. 2022-4

[3]
A comprehensive analysis of the mutational landscape of the newly emerging Omicron (B.1.1.529) variant and comparison of mutations with VOCs and VOIs.

Geroscience. 2022-10

[4]
Binding Interactions between Receptor-Binding Domain of Spike Protein and Human Angiotensin Converting Enzyme-2 in Omicron Variant.

J Phys Chem Lett. 2022-5-5

[5]
Computer Simulations and Network-Based Profiling of Binding and Allosteric Interactions of SARS-CoV-2 Spike Variant Complexes and the Host Receptor: Dissecting the Mechanistic Effects of the Delta and Omicron Mutations.

Int J Mol Sci. 2022-4-15

[6]
Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assessment.

J Med Virol. 2022-10

[7]
The rapid emergence of multiple sublineages of Omicron (B.1.1.529) variant: Dynamic profiling via molecular phylogenetics and mutational landscape studies.

J Infect Public Health. 2022-11

[8]
Origin of the tight binding mode to ACE2 triggered by multi-point mutations in the omicron variant: a dynamic insight.

Phys Chem Chem Phys. 2022-4-13

[9]
Mutational Analysis of Circulating Omicron SARS-CoV-2 Lineages in the Al-Baha Region of Saudi Arabia.

J Multidiscip Healthc. 2023-7-27

[10]
Identification of key mutations responsible for the enhancement of receptor-binding affinity and immune escape of SARS-CoV-2 Omicron variant.

J Mol Graph Model. 2023-11

引用本文的文献

[1]
Adaptation of the Vaccine Prophylaxis Strategy to Variants of the SARS-CoV-2 Virus.

Vaccines (Basel). 2025-7-17

[2]
From Delta to Omicron-Genetic Epidemiology of SARS-CoV-2 (hCoV-19) in Southern Poland.

Pathogens. 2025-7-17

[3]
Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent.

Biomolecules. 2025-6-1

[4]
Identification of Significant Mutations in Spike Protein of SARS-CoV-2 Variants of Concern and the Discovery of Potent Inhibitors.

Glob Health Epidemiol Genom. 2025-4-28

[5]
Potent bivalent nanobody constructs that protect against the SARS-CoV-2 XBB variant.

Npj Viruses. 2025-3-13

[6]
The Virus Entry Pathway Determines Sensitivity to the Antiviral Peptide TAT-I24.

Viruses. 2025-3-23

[7]
Epimaps of the SARS-CoV-2 Receptor-Binding Domain Mutational Landscape: Insights into Protein Stability, Epitope Prediction, and Antibody Binding.

Biomolecules. 2025-2-18

[8]
Genomic Surveillance and Molecular Characterization of SARS-CoV-2 Variants During the Peak of the Pandemic in Türkiye.

Biochem Genet. 2024-11-8

[9]
Characterization of the viral genome of Omicron variants of SARS-CoV-2 circulating in Tripura, a remote frontier state in Northeastern India.

Mol Biol Rep. 2024-10-28

[10]
Anti-SARS-CoV-2 IgM Antibody Levels Measured by an In-House ELISA in a Convalescent Latin Population Persist over Time and Exhibit Neutralizing Capacity to Several Variants of Concern.

Diagnostics (Basel). 2024-10-3

本文引用的文献

[1]
A Paradigm Shift in the Combination Changes of SARS-CoV-2 Variants and Increased Spread of Delta Variant (B.1.617.2) across the World.

Aging Dis. 2022-6-1

[2]
The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape.

Int J Biol Macromol. 2022-5-31

[3]
SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines.

Front Med (Lausanne). 2022-2-22

[4]
Omicron variant (B.1.1.529) of SARS-CoV-2: understanding mutations in the genome, S-glycoprotein, and antibody-binding regions.

Geroscience. 2022-4

[5]
A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations.

Front Immunol. 2022

[6]
Omicron: A Heavily Mutated SARS-CoV-2 Variant Exhibits Stronger Binding to ACE2 and Potently Escapes Approved COVID-19 Therapeutic Antibodies.

Front Immunol. 2021

[7]
SARS-CoV-2 E484K Mutation Narrative Review: Epidemiology, Immune Escape, Clinical Implications, and Future Considerations.

Infect Drug Resist. 2022-2-3

[8]
Omicron (B.1.1.529) variant of SARS-CoV-2: Concerns, challenges, and recent updates.

J Med Virol. 2022-6

[9]
SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses.

Cell. 2022-2-3

[10]
The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic.

Cell. 2022-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索