Lee Kyung-Tae, Han Juhyeong, Kim Kwang-Hyung
Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
Plant Pathol J. 2022 Aug;38(4):395-402. doi: 10.5423/PPJ.NT.04.2022.0062. Epub 2022 Aug 1.
To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory (LSTM), with diverse input datasets, and compares their performance. The Blast_Weather_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.
为了预测稻瘟病,人们提出了许多机器学习方法。由于输入数据的质量和数量对机器学习技术至关重要,本研究通过将两种人工神经网络模型,即前馈神经网络(FFNN)和长短期记忆网络(LSTM),与不同的输入数据集相结合,开发了三种基于人工神经网络的稻瘟病预测模型,并比较了它们的性能。Blast_Weather_FFNN模型在稻瘟病预测方面具有最高的召回率(66.3%)。该模型需要两种类型的输入数据:过去3年的稻瘟病发生数据以及预测年份1月至7月的天气数据(日最高温度、相对湿度和降水量)。本研究表明,通过应用合适的机器学习技术以及对涉及输入数据的超参数调整进行优化,可以提高基于人工神经网络的疾病预测模型的性能。此外,我们强调了长期疾病数据系统收集的重要性。