Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia.
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia E-mail:
Water Sci Technol. 2024 Apr;89(7):1701-1724. doi: 10.2166/wst.2024.099. Epub 2024 Mar 26.
Hyperparameter tuning is an important process to maximize the performance of any neural network model. This present study proposed the factorial design of experiment for screening and response surface methodology to optimize the hyperparameter of two artificial neural network algorithms. Feed-forward neural network (FFNN) and radial basis function neural network (RBFNN) are applied to predict the permeate flux of palm oil mill effluent. Permeate pump and transmembrane pressure of the submerge membrane bioreactor system are the input variables. Six hyperparameters of the FFNN model including four numerical factors (neuron numbers, learning rate, momentum, and epoch numbers) and two categorical factors (training and activation function) are used in hyperparameter optimization. RBFNN includes two numerical factors such as a number of neurons and spreads. The conventional method (one-variable-at-a-time) is compared in terms of optimization processing time and the accuracy of the model. The result indicates that the optimal hyperparameters obtained by the proposed approach produce good accuracy with a smaller generalization error. The simulation results show an improvement of more than 65% of training performance, with less repetition and processing time. This proposed methodology can be utilized for any type of neural network application to find the optimum levels of different parameters.
超参数调优是最大化任何神经网络模型性能的重要过程。本研究提出了析因实验设计和响应面法来优化两种人工神经网络算法的超参数。前馈神经网络(FFNN)和径向基函数神经网络(RBFNN)应用于预测棕榈油废水渗透通量。渗透泵和浸没膜生物反应器系统的跨膜压力是输入变量。FFNN 模型的六个超参数包括四个数值因素(神经元数量、学习率、动量和时期数量)和两个分类因素(训练和激活函数)用于超参数优化。RBFNN 包括两个数值因素,如神经元数量和扩展。在优化处理时间和模型准确性方面,比较了传统方法(逐个变量法)。结果表明,所提出方法获得的最优超参数具有较小的泛化误差,产生了良好的准确性。模拟结果表明,训练性能提高了 65%以上,重复次数和处理时间更少。该方法可用于任何类型的神经网络应用,以找到不同参数的最佳水平。