Suppr超能文献

利用机器学习整合多源转录组信息鉴定影响猪脂肪沉积的生物标志物。

Using Machine Learning to Identify Biomarkers Affecting Fat Deposition in Pigs by Integrating Multisource Transcriptome Information.

机构信息

National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

出版信息

J Agric Food Chem. 2022 Aug 24;70(33):10359-10370. doi: 10.1021/acs.jafc.2c03339. Epub 2022 Aug 11.

Abstract

Fat deposition in pigs is not only closely related to pig production efficiency and pork quality but also an ideal model for human obesity. Transcriptome sequencing is widely used to study fat deposition. However, due to small sample sizes, high false positive rates, and poor consistency of results from different studies, new strategies are urgently needed. Machine learning, a new analysis method, can effectively fit complex data and accurately identify samples and genes. In this study, 36 samples of adipose tissue, muscle tissue, and liver tissue were collected from Songliao black pigs and Landrace pigs, and the mRNA of all the samples was sequenced. In addition, we collected transcriptome data for 64 samples in the GEO database from four different sources. After standardization and imputation of missing values in the data set comprising 100 samples, traditional differential expression analysis was carried out, and different numbers of expressed genes were selected as features for the training model of eight machine learning methods. In the 1000 replications of fourfold cross validation with 100 samples, AdaBoost performed best, with an average prediction accuracy greater than 93% and the highest mean area under the curve in predicting the high- and low-fat content groups among the eight ML methods. According to their performance-based ranks inferred by AdaBoost, 12 genes related to fat deposition were identified; among them, and were specifically expressed in adipose tissue, and was specifically expressed in the liver, which could be important candidate biomarkers affecting fat deposition.

摘要

猪的脂肪沉积不仅与猪的生产效率和猪肉品质密切相关,而且是研究人类肥胖的理想模型。转录组测序被广泛用于研究脂肪沉积。然而,由于样本量小、假阳性率高以及不同研究结果的一致性差,因此迫切需要新的策略。机器学习是一种新的分析方法,它可以有效地拟合复杂数据,并准确地识别样本和基因。在这项研究中,我们从松辽黑猪和长白猪中收集了 36 个脂肪组织、肌肉组织和肝脏组织样本,并对所有样本的 mRNA 进行了测序。此外,我们从 GEO 数据库中收集了来自四个不同来源的 64 个样本的转录组数据。在对包含 100 个样本的数据集中的缺失值进行标准化和插补后,我们进行了传统的差异表达分析,并选择了不同数量的表达基因作为 8 种机器学习方法的训练模型的特征。在对 100 个样本进行的 4 倍交叉验证的 1000 次重复中,AdaBoost 表现最好,平均预测准确率大于 93%,在预测 8 种 ML 方法中高低脂肪含量组的平均曲线下面积最高。根据 AdaBoost 推断的基于性能的排名,我们确定了 12 个与脂肪沉积相关的基因;其中, 和 特异性表达于脂肪组织, 特异性表达于肝脏,它们可能是影响脂肪沉积的重要候选生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/9413214/8bb9c55d9a6e/jf2c03339_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验