Suppr超能文献

使用最小二乘支持向量机(LSSVM)模型混合法对废弃聚对苯二甲酸乙二酯(PET)与辅助胶凝材料(SCM)混合水泥基灌浆料的抗压强度进行建模

Modelling Compression Strength of Waste PET and SCM Blended Cementitious Grout Using Hybrid of LSSVM Models.

作者信息

Khan Kaffayatullah, Gudainiyan Jitendra, Iqbal Mudassir, Jamal Arshad, Amin Muhammad Nasir, Mohammed Ibrahim, Al-Faiad Majdi Adel, Abu-Arab Abdullah M

机构信息

Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, P.O. Box 380, Al-Hofuf 31982, Saudi Arabia.

Department of Civil Engineering, GLA University, Mathura 281 406, India.

出版信息

Materials (Basel). 2022 Jul 29;15(15):5242. doi: 10.3390/ma15155242.

Abstract

Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and industrial by-products in concrete and grouting materials has an important role in reducing the Portland cement usage, the CO emissions, and disposal issues. Thus, the goal of the present work is to estimate the compressive strength (CS) of polyethylene terephthalate (PET) and two supplementary cementitious materials (SCMs), namely FA and SF, blended cementitious grouts to produce green mix. For this purpose, five hybrid least-square support vector machine (LSSVM) models were constructed using swarm intelligence algorithms, including particle swarm optimization, grey wolf optimizer, salp swarm algorithm, Harris hawks optimization, and slime mold algorithm. To construct and validate the developed hybrid models, a sum of 156 samples were generated in the lab with varying percentages of PET and SCM. To estimate the CS, five influencing parameters, namely PET, SCM, FLOW, 1-day CS (CS), and 7-day CS (CS), were considered. The performance of the developed models was assessed in terms of multiple performance indices. Based on the results, the proposed LSSVM-PSO (a hybrid model of LSSVM and particle swarm optimization) was determined to be the best performing model with R = 0.9708, RMSE = 0.0424, and total score = 40 in the validation phase. The results of sensitivity analysis demonstrate that all the input parameters substantially impact the 28-day CS (CS) of cementitious grouts. Among them, the CS has the most significant effect. From the experimental results, it can be deduced that PET/SCM has no detrimental impact on CS of cementitious grouts, making PET a viable alternative for generating sustainable and green concrete. In addition, the proposed LSSVM-PSO model can be utilized as a novel alternative for estimating the CS of cementitious grouts, which will aid engineers during the design phase of civil engineering projects.

摘要

如今,掺有火山灰质添加剂(如粉煤灰(FA)、硅灰(SF)、矿渣等)的混凝土常用于建筑实践中。在混凝土和灌浆材料中使用火山灰质添加剂和工业副产品对于减少波特兰水泥用量、二氧化碳排放以及处置问题具有重要作用。因此,本工作的目标是评估聚对苯二甲酸乙二酯(PET)与两种辅助胶凝材料(SCMs),即粉煤灰和硅灰,混合而成的胶凝灌浆材料的抗压强度(CS),以制备绿色混合料。为此,使用群体智能算法构建了五个混合最小二乘支持向量机(LSSVM)模型,包括粒子群优化算法、灰狼优化算法、樽海鞘群算法、哈里斯鹰优化算法和黏菌算法。为了构建和验证所开发的混合模型,在实验室中生成了总共156个样本,其中PET和SCM的百分比各不相同。为了评估抗压强度,考虑了五个影响参数,即PET、SCM、流动度、1天抗压强度(CS)和7天抗压强度(CS)。根据多个性能指标评估所开发模型的性能。结果表明,所提出的LSSVM - PSO(LSSVM和粒子群优化的混合模型)在验证阶段表现最佳,相关系数R = 0.9708,均方根误差RMSE = 0.0424,总分 = 40。敏感性分析结果表明,所有输入参数对胶凝灌浆材料的28天抗压强度(CS)都有显著影响。其中,抗压强度的影响最为显著。从实验结果可以推断,PET/SCM对胶凝灌浆材料的抗压强度没有不利影响,这使得PET成为生产可持续绿色混凝土的可行替代品。此外,所提出的LSSVM - PSO模型可作为评估胶凝灌浆材料抗压强度的一种新型方法,这将在土木工程设计阶段为工程师提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8e4/9369487/711d89b3259f/materials-15-05242-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验