Suppr超能文献

基于基因表达式编程的废弃PET/SCM混合水泥基灌浆料抗压强度预测模型

Predictive Modeling of Compression Strength of Waste PET/SCM Blended Cementitious Grout Using Gene Expression Programming.

作者信息

Khan Kaffayatullah, Jalal Fazal E, Iqbal Mudassir, Khan Muhammad Imran, Amin Muhammad Nasir, Al-Faiad Majdi Adel

机构信息

Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), Al Ahsa 31982, Saudi Arabia.

Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Materials (Basel). 2022 Apr 23;15(9):3077. doi: 10.3390/ma15093077.

Abstract

The central aim of this study is to evaluate the effect of polyethylene terephthalate (PET) alongside two supplementary cementitious materials (SCMs)—i.e., fly ash (FA) and silica fume (SF)—on the 28-day compressive strength (CS28d) of cementitious grouts by using. For the gene expression programming (GEP) approach, a total of 156 samples were prepared in the laboratory using variable percentages of PET and SCM (0−10%, each). To achieve the best hyper parameter setting of the optimized GEP model, 10 trials were undertaken by varying the genetic parameters while observing the models’ performance in terms of statistical indices, i.e., correlation coefficient (R), root mean squared error (RMSE), mean absolute error (MAE), comparison of regression slopes, and predicted to experimental ratios (ρ). Sensitivity analysis and parametric study were performed on the best GEP model (obtained at; chromosomes = 50, head size = 9, and genes = 3) to evaluate the effect of contributing input parameters. The sensitivity analysis showed that: CS7d (30.47%) > CS1d (28.89%) > SCM (18.88%) > Flow (18.53%) > PET (3.23%). The finally selected GEP model exhibited optimal statistical indices (R = 0.977 and 0.975, RMSE = 2.423 and 2.531, MAE = 1.918 and 2.055) for training and validation datasets, respectively. The role of PET/SCM has no negative influence on the CS28d of cementitious grouts, which renders the PET a suitable alternative toward achieving sustainable and green concrete. Hence, the simple mathematical expression of GEP is efficacious, which leads to saving time and reducing labor costs of testing in civil engineering projects.

摘要

本研究的核心目标是通过使用聚对苯二甲酸乙二酯(PET)以及两种辅助胶凝材料(SCMs)——即粉煤灰(FA)和硅灰(SF),来评估它们对胶凝灌浆料28天抗压强度(CS28d)的影响。对于基因表达式编程(GEP)方法,在实验室中使用不同百分比的PET和SCM(各为0 - 10%)制备了总共156个样本。为了实现优化的GEP模型的最佳超参数设置,通过改变遗传参数进行了10次试验,同时根据统计指标观察模型的性能,即相关系数(R)、均方根误差(RMSE)、平均绝对误差(MAE)、回归斜率比较以及预测与实验比率(ρ)。对最佳GEP模型(在染色体 = 50、头部大小 = 9和基因 = 3时获得)进行了敏感性分析和参数研究,以评估各输入参数的影响。敏感性分析表明:CS7d(30.47%)> CS1d(28.89%)> SCM(18.88%)> 流动度(18.53%)> PET(3.23%)。最终选定的GEP模型在训练和验证数据集上分别表现出最优的统计指标(R = 0.977和0.975,RMSE = 2.423和2.531,MAE = 1.918和2.055)。PET/SCM对胶凝灌浆料的CS28d没有负面影响,这使得PET成为实现可持续绿色混凝土的合适替代品。因此,GEP的简单数学表达式是有效的,这有助于节省时间并降低土木工程项目中的测试劳动力成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8199/9102582/6dec85170646/materials-15-03077-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验