Sánchez de la Muela A M, García Cambronero L E, Malheiros L F, Ruiz-Román J M
Department of Geologic and Mining Engineering, Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, 28003 Madrid, Spain.
Associated Laboratory for Energy, Transport and Aeronautics, LAETA (PROA), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
Materials (Basel). 2022 Aug 2;15(15):5320. doi: 10.3390/ma15155320.
Metal matrix syntactic foams (MMSF) are advanced cellular materials constituted by a system of a minimum of two phases, in which a dispersion of hollow particles is embedded by a continuous metal matrix. The incorporation of porous fillers favors the development of low-density materials with exceptional behavior for damping vibrations, impacts, and blast effects, shielding acoustic, thermal, and electromagnetic energies. There are three main techniques to produce them: infiltration casting technique (ICT), stir casting technique (SCT), and powder metallurgy technique (P/M). The first two techniques are used for embedding filler into lower melting point metallic matrices than fillers, in contrast to P/M. The present study demonstrates the feasibility of producing MMSF with components of similar melting points by ICT. The fillers were synthesized in-situ with aluminum and a natural foaming agent from wastes of Spanish white marble quarries. These novel aluminum syntactic foams (ASF) were mechanically characterized following the ISO-13314 and exhibited a porosity, plateau stress, and energy absorption capacity of 41%, 37.65 MPa, 8.62 MJ/m (at 35% of densification), respectively. These properties are slightly superior to equal porosity LECA ASF, making these novel ASF suitable for the same applications as LECA-ASF.
金属基复合泡沫材料(MMSF)是一种先进的多孔材料,由至少两相组成,其中空心颗粒分散在连续的金属基体中。加入多孔填料有利于开发具有低密度的材料,这些材料在减振、抗冲击和防爆方面表现优异,还能屏蔽声能、热能和电磁能。生产它们有三种主要技术:浸渗铸造技术(ICT)、搅拌铸造技术(SCT)和粉末冶金技术(P/M)。与粉末冶金技术不同,前两种技术用于将填料嵌入熔点低于填料的金属基体中。本研究证明了通过浸渗铸造技术用熔点相近的组分生产金属基复合泡沫材料的可行性。填料由铝和一种天然发泡剂原位合成,该天然发泡剂来自西班牙白色大理石采石场的废料。这些新型铝基复合泡沫材料(ASF)按照ISO-13314进行了力学性能表征,其孔隙率、平台应力和能量吸收能力分别为41%、37.65兆帕、8.62兆焦/立方米(在致密化程度为35%时)。这些性能略优于相同孔隙率的LECA ASF,使得这些新型ASF适用于与LECA-ASF相同的应用。