Suppr超能文献

QSAR、分子对接、MD 模拟和 MMGBSA 计算方法识别优化 ALK 酪氨酸激酶抑制剂为抗癌先导所需的隐藏药效团特征。

QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads.

机构信息

Faculty of Pharmacy, Oriental University, Indore 453555, Madhya Pradesh, India.

Department of Chemistry, Government College of Arts and Science, Aurangabad 431004, Maharashtra, India.

出版信息

Molecules. 2022 Aug 3;27(15):4951. doi: 10.3390/molecules27154951.

Abstract

ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.

摘要

ALK 酪氨酸激酶(ALK TK)是抗肿瘤药物开发的重要靶点。在本工作中,我们对 224 个分子的数据集进行了 QSAR 分析,以便快速预测查询化合物的抗癌活性。双交叉验证为基于稳健的单变量和多变量 QSAR 模型的遗传算法-多元线性回归(GA-MLR)分配了一个向上跳跃,该模型具有高统计性能,体现在各种参数中,如拟合参数;R2=0.69-0.87,F=403.46-292.11 等,内部验证参数;Q2LOO=0.69-0.86,Q2LMO=0.69-0.86,CCCcv=0.82-0.93 等,或外部验证参数 Q2F1=0.64-0.82,Q2F2=0.63-0.82,Q2F3=0.65-0.81,R2ext=0.65-0.83,包括 RMSEtr<RMSEcv。本 QSAR 评价成功地确定了某些独特的结构特征,这些特征负责 ALK TK 的抑制效力,例如,在氮原子的四个键内的平面氮原子,在非环氧原子旁边的五个键内的氟原子,在环碳原子的两个键内的亲脂原子。分子对接、MD 模拟和 MMGBSA 计算结果与 QSAR 评价一致,并互为补充。因此,本研究有助于药物化学家确定化合物的优先级,以便进行抗癌活性的实验检测,并对其进行优化,以获得更有效的 ALK 酪氨酸激酶抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e937/9370430/947a5d2e98f2/molecules-27-04951-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验