Suppr超能文献

微波辅助合成负载在富氮共价三嗪框架上的氧化铱和钯纳米颗粒,作为用于析氢和氧还原反应的优异电催化剂。

Microwave-assisted synthesis of iridium oxide and palladium nanoparticles supported on a nitrogen-rich covalent triazine framework as superior electrocatalysts for the hydrogen evolution and oxygen reduction reaction.

作者信息

Rademacher Lars, Beglau Thi Hai Yen, Heinen Tobias, Barthel Juri, Janiak Christoph

机构信息

Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.

Ernst Ruska-Zentrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, Jülich, Germany.

出版信息

Front Chem. 2022 Jul 26;10:945261. doi: 10.3389/fchem.2022.945261. eCollection 2022.

Abstract

Iridium oxide (IrO-NP) and palladium nanoparticles (Pd-NP) were supported on a 2,6-dicyanopyridine-based covalent-triazine framework (DCP-CTF) by energy-saving and sustainable microwave-assisted thermal decomposition reactions in propylene carbonate and in the ionic liquid [BMIm][NTf]. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) confirm well-distributed NPs with sizes from 2 to 13 nm stabilized on the CTF particles. Metal contents between 10 and 41 wt% were determined by flame atomic absorption spectroscopy (AAS). Nitrogen sorption measurements of the metal-loaded CTFs revealed Brunauer-Emmett-Teller (BET) surface areas between 904 and 1353 m g. The composites show superior performance toward the hydrogen evolution reaction (HER) with low overpotentials from 47 to 325 mV and toward the oxygen reduction reaction (ORR) with high half-wave potentials between 810 and 872 mV. IrO samples in particular show high performances toward HER while the Pd samples show better performance toward ORR. In both reactions, electrocatalysts can compete with the high performance of Pt/C. Exemplary cyclic voltammetry durability tests with 1000 cycles and subsequent TEM analyses show good long-term stability of the materials. The results demonstrate the promising synergistic effects of NP-decorated CTF materials, resulting in a high electrocatalytic activity and stability.

摘要

通过在碳酸丙烯酯和离子液体[BMIm][NTf]中进行节能且可持续的微波辅助热分解反应,将氧化铱(IrO-NP)和钯纳米颗粒(Pd-NP)负载在基于2,6-二氰基吡啶的共价三嗪框架(DCP-CTF)上。透射电子显微镜(TEM)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)证实,尺寸在2至13纳米之间的纳米颗粒均匀分布在CTF颗粒上并得到稳定。通过火焰原子吸收光谱法(AAS)测定的金属含量在10至41 wt%之间。对负载金属的CTF进行的氮吸附测量显示,其布鲁诺尔-埃米特-泰勒(BET)表面积在904至1353 m²/g之间。该复合材料在析氢反应(HER)中表现出优异性能,过电位低至47至325 mV,在氧还原反应(ORR)中表现出优异性能,半波电位高至810至872 mV。特别是IrO样品在HER方面表现出高性能,而Pd样品在ORR方面表现出更好的性能。在这两种反应中,电催化剂都能与高性能的Pt/C相竞争。具有1000次循环的典型循环伏安耐久性测试以及随后的TEM分析表明,这些材料具有良好的长期稳定性。结果证明了NP修饰的CTF材料具有有前景的协同效应,从而产生高电催化活性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfac/9360555/d5a9d2d8ae60/FCHEM_fchem-2022-945261_wc_sch1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验