Liu Yuqi, Lu Chunhui, Luo Mingwei, Han Taotao, Ge Yanqing, Dong Wen, Xue Xinyi, Zhou Yixuan, Xu Xinlong
Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
Nanoscale Horiz. 2022 Sep 26;7(10):1217-1227. doi: 10.1039/d2nh00237j.
Van der Waals heterostructures have great potential for the emerging self-powered photoelectrochemical photodetectors due to their outstanding photoelectric conversion capability and efficient interfacial carrier transportation. By considering the band alignment, structural design, and growth optimization, the heterostructures of vertically oriented SnS with different densities on MoS nanosheets are designed and fabricated using a two-step epitaxial growth method. Compared with SnS, MoS, and low density-vertical SnS/MoS heterostructure, the high density-vertical SnS/MoS heterostructure exhibits largely enhanced self-powered photodetection performances, such as a giant photocurrent density (∼932.8 μA cm), an excellent photoresponsivity (4.66 mA W), and an ultrafast response/recovery time (3.6/6.4 ms) in the ultraviolet-visible range. This impressive enhancement of high density-vertical SnS/MoS photodetectors is mainly ascribed to the essentially improved charge transfer and carrier transport of type-II band alignment heterostructures and the efficient light absorption from the unique light-trapping structure. In addition, the photoelectrocatalytic water splitting performance of the high density-vertical SnS/MoS heterostructure also benefits from the type-II band alignment and the light-trapping structure. This work provides valuable inspiration for the design of two-dimensional optoelectronic and photoelectrochemical devices with improved performance by the morphology and heterostructure design.
范德华异质结构因其出色的光电转换能力和高效的界面载流子传输,在新兴的自供电光电化学光电探测器方面具有巨大潜力。通过考虑能带排列、结构设计和生长优化,采用两步外延生长法设计并制备了在MoS纳米片上具有不同密度的垂直取向SnS异质结构。与SnS、MoS以及低密度垂直SnS/MoS异质结构相比,高密度垂直SnS/MoS异质结构展现出大幅增强的自供电光电探测性能,例如在紫外-可见光范围内具有巨大的光电流密度(约932.8 μA/cm²)、出色的光响应度(4.66 mA/W)以及超快的响应/恢复时间(3.6/6.4 ms)。高密度垂直SnS/MoS光电探测器的这种显著增强主要归因于II型能带排列异质结构中电荷转移和载流子传输的本质改善以及独特光捕获结构的高效光吸收。此外,高密度垂直SnS/MoS异质结构的光电催化水分解性能也受益于II型能带排列和光捕获结构。这项工作为通过形貌和异质结构设计来设计性能更优的二维光电器件和光电化学器件提供了有价值的灵感。