Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan.
Department of Internal Medicine, Chi Mei Medical Center, Chiali District, Tainan 710, Taiwan.
Medicine (Baltimore). 2022 Aug 12;101(32):e29718. doi: 10.1097/MD.0000000000029718.
BACKGROUND: The negative impacts of COVID-19 (ImpactCOVID) on public health are commonly assessed using the cumulative numbers of confirmed cases (CNCCs). However, whether different mathematical models yield disparate results based on varying time frames remains unclear. This study aimed to compare the differences in prediction accuracy between 2 proposed COVID-19 models, develop an angle index that can be objectively used to evaluate ImpactCOVID, compare the differences in angle indexes across countries/regions worldwide, and examine the difference in determining the inflection point (IP) on the CNCCs between the 2 models. METHODS: Data were downloaded from the GitHub website. Two mathematical models were examined in 2 time-frame scenarios during the COVID-19 pandemic (the early 20-day stage and the entire year of 2020). Angle index was determined by the ratio (=CNCCs at IP÷IP days). The R2 model and mean absolute percentage error (MAPE) were used to evaluate the model's prediction accuracy in the 2 time-frame scenarios. Comparisons were made using 3 visualizations: line-chart plots, choropleth maps, and forest plots. RESULTS: Exponential growth (EXPO) and item response theory (IRT) models had identical prediction power at the earlier outbreak stage. The IRT model had a higher model R2 and smaller MAPE than the EXPO model in 2020. Hubei Province in China had the highest angle index at the early stage, and India, California (US), and the United Kingdom had the highest angle indexes in 2020. The IRT model was superior to the EXPO model in determining the IP on an Ogive curve. CONCLUSION: Both proposed models can be used to measure ImpactCOVID. However, the IRT model (superior to EXPO in the long-term and Ogive-type data) is recommended for epidemiologists and policymakers to measure ImpactCOVID in the future.
背景:新冠疫情(ImpactCOVID)对公共卫生的负面影响通常使用确诊病例数(CNCCs)的累计数量进行评估。然而,不同的数学模型在不同的时间框架下是否会产生不同的结果尚不清楚。本研究旨在比较两种提出的 COVID-19 模型的预测准确性差异,开发一个可客观用于评估 ImpactCOVID 的角度指数,比较全球各国/地区之间的角度指数差异,并检验两个模型在确定确诊病例数拐点(IP)上的差异。
方法:数据从 GitHub 网站下载。在 COVID-19 大流行期间(前 20 天阶段和 2020 年全年),我们检查了两种数学模型在两种时间框架下的情况。角度指数由比率(=确诊病例数拐点处的确诊病例数÷拐点天数)确定。使用 R2 模型和平均绝对百分比误差(MAPE)来评估两种时间框架下模型的预测准确性。比较使用了三种可视化方法:线图、专题地图和森林图。
结果:在早期爆发阶段,指数增长(EXPO)和项目反应理论(IRT)模型具有相同的预测能力。在 2020 年,IRT 模型的 R2 更高,MAPE 更小。湖北省在早期阶段的角度指数最高,印度、加利福尼亚州(美国)和英国在 2020 年的角度指数最高。IRT 模型在确定 Ogive 曲线上的 IP 方面优于 EXPO 模型。
结论:两种提出的模型都可以用于衡量 ImpactCOVID。然而,建议未来的流行病学家和政策制定者使用 IRT 模型(在长期和 Ogive 类型数据方面优于 EXPO)来衡量 ImpactCOVID。
Int J Environ Res Public Health. 2021-2-18
Medicine (Baltimore). 2022-2-4
Int J Environ Res Public Health. 2021-3-3
Math Biosci Eng. 2022-6-20
Medicine (Baltimore). 2022-2-4
Int J Environ Res Public Health. 2021-3-3
Int J Environ Res Public Health. 2021-2-18
Med Decis Making. 2021-1
J Med Internet Res. 2020-12-10