文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较两种数学模型在评估 COVID-19 早期和 2020 年全年损害方面的预测准确性。

Comparison of prediction accuracies between two mathematical models for the assessment of COVID-19 damage at the early stage and throughout 2020.

机构信息

Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan.

Department of Internal Medicine, Chi Mei Medical Center, Chiali District, Tainan 710, Taiwan.

出版信息

Medicine (Baltimore). 2022 Aug 12;101(32):e29718. doi: 10.1097/MD.0000000000029718.


DOI:10.1097/MD.0000000000029718
PMID:35960054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9370249/
Abstract

BACKGROUND: The negative impacts of COVID-19 (ImpactCOVID) on public health are commonly assessed using the cumulative numbers of confirmed cases (CNCCs). However, whether different mathematical models yield disparate results based on varying time frames remains unclear. This study aimed to compare the differences in prediction accuracy between 2 proposed COVID-19 models, develop an angle index that can be objectively used to evaluate ImpactCOVID, compare the differences in angle indexes across countries/regions worldwide, and examine the difference in determining the inflection point (IP) on the CNCCs between the 2 models. METHODS: Data were downloaded from the GitHub website. Two mathematical models were examined in 2 time-frame scenarios during the COVID-19 pandemic (the early 20-day stage and the entire year of 2020). Angle index was determined by the ratio (=CNCCs at IP÷IP days). The R2 model and mean absolute percentage error (MAPE) were used to evaluate the model's prediction accuracy in the 2 time-frame scenarios. Comparisons were made using 3 visualizations: line-chart plots, choropleth maps, and forest plots. RESULTS: Exponential growth (EXPO) and item response theory (IRT) models had identical prediction power at the earlier outbreak stage. The IRT model had a higher model R2 and smaller MAPE than the EXPO model in 2020. Hubei Province in China had the highest angle index at the early stage, and India, California (US), and the United Kingdom had the highest angle indexes in 2020. The IRT model was superior to the EXPO model in determining the IP on an Ogive curve. CONCLUSION: Both proposed models can be used to measure ImpactCOVID. However, the IRT model (superior to EXPO in the long-term and Ogive-type data) is recommended for epidemiologists and policymakers to measure ImpactCOVID in the future.

摘要

背景:新冠疫情(ImpactCOVID)对公共卫生的负面影响通常使用确诊病例数(CNCCs)的累计数量进行评估。然而,不同的数学模型在不同的时间框架下是否会产生不同的结果尚不清楚。本研究旨在比较两种提出的 COVID-19 模型的预测准确性差异,开发一个可客观用于评估 ImpactCOVID 的角度指数,比较全球各国/地区之间的角度指数差异,并检验两个模型在确定确诊病例数拐点(IP)上的差异。

方法:数据从 GitHub 网站下载。在 COVID-19 大流行期间(前 20 天阶段和 2020 年全年),我们检查了两种数学模型在两种时间框架下的情况。角度指数由比率(=确诊病例数拐点处的确诊病例数÷拐点天数)确定。使用 R2 模型和平均绝对百分比误差(MAPE)来评估两种时间框架下模型的预测准确性。比较使用了三种可视化方法:线图、专题地图和森林图。

结果:在早期爆发阶段,指数增长(EXPO)和项目反应理论(IRT)模型具有相同的预测能力。在 2020 年,IRT 模型的 R2 更高,MAPE 更小。湖北省在早期阶段的角度指数最高,印度、加利福尼亚州(美国)和英国在 2020 年的角度指数最高。IRT 模型在确定 Ogive 曲线上的 IP 方面优于 EXPO 模型。

结论:两种提出的模型都可以用于衡量 ImpactCOVID。然而,建议未来的流行病学家和政策制定者使用 IRT 模型(在长期和 Ogive 类型数据方面优于 EXPO)来衡量 ImpactCOVID。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/7783b1ab3389/medi-101-e29718-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/5791736d1b74/medi-101-e29718-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/c62692cb4dde/medi-101-e29718-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/76bb40d3a04e/medi-101-e29718-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/4822acc2f12a/medi-101-e29718-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/9cc7cfc2051a/medi-101-e29718-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/ee7c8271ccb0/medi-101-e29718-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/49f7934cf3d6/medi-101-e29718-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/403ed6c16184/medi-101-e29718-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/47e7fbdd03b2/medi-101-e29718-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/7783b1ab3389/medi-101-e29718-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/5791736d1b74/medi-101-e29718-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/c62692cb4dde/medi-101-e29718-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/76bb40d3a04e/medi-101-e29718-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/4822acc2f12a/medi-101-e29718-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/9cc7cfc2051a/medi-101-e29718-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/ee7c8271ccb0/medi-101-e29718-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/49f7934cf3d6/medi-101-e29718-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/403ed6c16184/medi-101-e29718-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/47e7fbdd03b2/medi-101-e29718-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc5/9371574/7783b1ab3389/medi-101-e29718-g010.jpg

相似文献

[1]
Comparison of prediction accuracies between two mathematical models for the assessment of COVID-19 damage at the early stage and throughout 2020.

Medicine (Baltimore). 2022-8-12

[2]
An online time-to-event dashboard comparing the effective control of COVID-19 among continents using the inflection point on an ogive curve: Observational study.

Medicine (Baltimore). 2021-3-12

[3]
Using the IPcase Index with Inflection Points and the Corresponding Case Numbers to Identify the Impact Hit by COVID-19 in China: An Observation Study.

Int J Environ Res Public Health. 2021-2-18

[4]
Comparison of prediction accuracies between mathematical models to make projections of confirmed cases during the COVID-19 pandamic by country/region.

Medicine (Baltimore). 2021-12-17

[5]
Visualizing the features of inflection point shown on a temporal bar graph using the data of COVID-19 pandemic.

Medicine (Baltimore). 2022-2-4

[6]
The use of the time-to-event index (Tevent) to compare the negative impact of COVID-19 on public health among continents/regions in 2020 and 2021: An observational study.

Medicine (Baltimore). 2022-12-9

[7]
Using Social Network Analysis to Identify Spatiotemporal Spread Patterns of COVID-19 around the World: Online Dashboard Development.

Int J Environ Res Public Health. 2021-3-3

[8]
A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.

J Med Internet Res. 2021-5-20

[9]
Data driven time-varying SEIR-LSTM/GRU algorithms to track the spread of COVID-19.

Math Biosci Eng. 2022-6-20

[10]
Enhancing COVID-19 Epidemic Forecasting Accuracy by Combining Real-time and Historical Data From Multiple Internet-Based Sources: Analysis of Social Media Data, Online News Articles, and Search Queries.

JMIR Public Health Surveill. 2022-6-16

本文引用的文献

[1]
Visualizing the features of inflection point shown on a temporal bar graph using the data of COVID-19 pandemic.

Medicine (Baltimore). 2022-2-4

[2]
Comparison of prediction accuracies between mathematical models to make projections of confirmed cases during the COVID-19 pandamic by country/region.

Medicine (Baltimore). 2021-12-17

[3]
Using Social Network Analysis to Identify Spatiotemporal Spread Patterns of COVID-19 around the World: Online Dashboard Development.

Int J Environ Res Public Health. 2021-3-3

[4]
An online time-to-event dashboard comparing the effective control of COVID-19 among continents using the inflection point on an ogive curve: Observational study.

Medicine (Baltimore). 2021-3-12

[5]
Using the IPcase Index with Inflection Points and the Corresponding Case Numbers to Identify the Impact Hit by COVID-19 in China: An Observation Study.

Int J Environ Res Public Health. 2021-2-18

[6]
The use of forest plot to identify article similarity and differences in characteristics between journals using medical subject headings terms: A protocol for bibliometric study.

Medicine (Baltimore). 2021-2-12

[7]
Features Constituting Actionable COVID-19 Dashboards: Descriptive Assessment and Expert Appraisal of 158 Public Web-Based COVID-19 Dashboards.

J Med Internet Res. 2021-2-24

[8]
A simple transmission dynamics model for predicting the evolution of COVID-19 under control measures in China.

Epidemiol Infect. 2021-2-10

[9]
Extrapolating Parametric Survival Models in Health Technology Assessment: A Simulation Study.

Med Decis Making. 2021-1

[10]
Effective Control of COVID-19 in South Korea: Cross-Sectional Study of Epidemiological Data.

J Med Internet Res. 2020-12-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索