Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.
Department of Medical Research, Chiali Chi-Mei Medical Center, Tainan, Taiwan.
Medicine (Baltimore). 2022 Feb 4;101(5):e28749. doi: 10.1097/MD.0000000000028749.
BACKGROUND: Exponential-like infection growth leading to peaks (denoted by inflection points [IP] or turning points) is usually the hallmark of infectious disease outbreaks, including coronaviruses. To determine the IPs of the novel coronavirus (COVID-19), we applied the item response theory model to detect phase transitions for each country/region and characterize the IP feature on the temporal bar graph (TBG). METHODS: The IP (using the item difficulty parameter to locate) was verified by the differential equation in calculus and interpreted by the TBG with 2 virtual and real empirical data (i.e., from Collatz conjecture and COVID-19 pandemic in 2020). Comparisons of IPs, R2, and burst strength [BS = ln() denoted by the infection number at IP(Nip) and the item slope parameter(a) in item response theory were made for countries/regions and continents on the choropleth map and the forest plot. RESULTS: We found that the evolution of COVID-19 on the TBG makes the data clear and easy to understand, the shorter IP (=53.9) was in China and the longest (=247.3) was in Europe, and the highest R2 (as the variance explained by the model) was in the US, with a mean R2 of 0.98. We successfully estimated the IPs for countries/regions on COVID-19 in 2020 and presented them on the TBG. CONCLUSION: Temporal visualization is recommended for researchers in future relevant studies (e.g., the evolution of keywords in a specific discipline) and is not merely limited to the IP search in COVID-19 pandemics as we did in this study.
背景:呈指数增长的感染增长导致峰值(由拐点[IP]或转折点表示)通常是传染病爆发的标志,包括冠状病毒。为了确定新型冠状病毒(COVID-19)的 IP,我们应用项目反应理论模型来检测每个国家/地区的相变,并在时间条形图(TBG)上描述 IP 特征。
方法:通过微积分中的微分方程验证 IP(使用项目难度参数定位),并通过具有 2 个虚拟和真实经验数据(即,来自 Collatz 猜想和 2020 年 COVID-19 大流行)的 TBG 进行解释。对国家/地区和大陆的 IP、R2 和爆发强度[BS=ln()]进行比较(以 IP 处的感染数量 Nip 和项目响应理论中的项目斜率参数(a)表示)在专题地图和森林图上。
结果:我们发现,COVID-19 在 TBG 上的演变使数据清晰易懂,中国的 IP 最短(=53.9),欧洲的最长(=247.3),美国的 R2 最高(表示模型解释的方差),平均 R2 为 0.98。我们成功估计了 2020 年 COVID-19 国家/地区的 IP,并在 TBG 上呈现了这些 IP。
结论:建议未来相关研究的研究人员进行时间可视化(例如,特定学科中关键词的演变),而不仅仅限于我们在这项研究中对 COVID-19 大流行中的 IP 搜索。
Medicine (Baltimore). 2022-2-4
Int J Environ Res Public Health. 2021-3-3
Int J Environ Res Public Health. 2021-2-18
BMC Med Res Methodol. 2020-10-6
Medicine (Baltimore). 2023-4-25