Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
Angew Chem Int Ed Engl. 2022 Oct 24;61(43):e202211267. doi: 10.1002/anie.202211267. Epub 2022 Sep 20.
Water scarcity caused by climate change and population growth poses a grave threat to human society. Of the different water purification technologies put forward, one presents a promising strategy that is spatially or temporally non-restricted-atmospheric water harvesting (AWH). Here we review recent progress in the design and study of AWH sorbents, ranging from the innovative chemistries to the integration of sophisticated architectures and functional components, and clarify the structure-property-performance relationship that governs the water capture and release processes. Features and limitations of each type of sorbents are summarized to elucidate the optimal working environments and modes. Progress in applications extending from water generation to thermal management and agriculture are discussed. Future developments regarding material modifications, performance measurements, and system optimizations are provided to overcome lingering barriers to sorbent design and implementation.
气候变化和人口增长导致的水资源短缺,对人类社会构成了严重威胁。在提出的各种不同的水净化技术中,一种具有广阔前景的策略是空间或时间上不受限制的大气水收集(AWH)。在这里,我们综述了 AWH 吸附剂在设计和研究方面的最新进展,涵盖了从创新化学到复杂结构和功能组件集成的各个方面,并阐明了控制水捕获和释放过程的结构-性能-行为关系。总结了每种类型吸附剂的特点和局限性,以阐明最佳的工作环境和模式。讨论了从水生成到热管理和农业应用的进展。提供了关于材料改性、性能测量和系统优化的未来发展,以克服吸附剂设计和实施中仍然存在的障碍。