Du Xuanxuan, Xie Zhiheng, Zhang Hanchao, Jiang Shoukun, Su Xing, Fan Jintu
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 00852, China.
Beijing National Laboratory for Molecular Sciences, Center for Integrated Spectroscopy, College of Chemistry and Molecular Engineering, Peking University, Beijing, Beijing, 100871, China.
Adv Mater. 2025 Aug;37(33):e2505279. doi: 10.1002/adma.202505279. Epub 2025 May 30.
Atmospheric water harvesting (AWH) presents great potential in addressing the increasing global challenges in freshwater and energy supply, especially in arid and semi-arid regions. The recent AWH materials focus primarily on maximizing water uptake, while conventional approaches prioritize hygroscopicity at the expense of mechanical integrity, which severely limits their applicability in real-world scenarios. In this study, a novel tunable hygroscopic mix-charged polyzwitterionic hydrogel (THMPH) is reported that achieves dual excellence in outstanding moisture absorbency and mechanical robustness. Owing to the broad ionic crosslink's degree enabling the rigid skeletal framework and energy-dissipative sacrificial networks, THMPH exhibits more than 200 times higher mechanical ductility (225 kPa tensile strength retention at 200% mass swelling ratio) in comparison with the commonly-used AWH zwitterionic polybetaine. The optimized topological structure coupled with improved lithium chloride binding affinity results in excellent water uptake (2.9 g g at 25 °C, 70% RH). When THMPH is used for daytime photovoltaic panel cooling, it can provide a 15 °C temperature reduction of a PV panel under 1 kW m solar irradiation, resulting in a 7.33% increase in solar energy conversion efficiency. This hydrogel design paradigm, synergizing superior hygroscopicity with exceptional mechanical robustness, demonstrates significant potential for advancing practical applications.
大气水收集(AWH)在应对全球淡水和能源供应日益增加的挑战方面具有巨大潜力,特别是在干旱和半干旱地区。最近的AWH材料主要侧重于最大化水吸收,而传统方法则以牺牲机械完整性为代价优先考虑吸湿性,这严重限制了它们在实际场景中的适用性。在本研究中,报道了一种新型可调谐吸湿混合带电聚两性离子水凝胶(THMPH),它在出色的吸湿能力和机械强度方面实现了双重卓越。由于广泛的离子交联度形成了刚性骨架框架和能量耗散牺牲网络,与常用的AWH两性离子聚甜菜碱相比,THMPH表现出高出200倍以上的机械延展性(在200%质量溶胀率下拉伸强度保持率为225 kPa)。优化的拓扑结构加上改进的氯化锂结合亲和力导致出色的水吸收(在25°C、70%相对湿度下为2.9 gg)。当THMPH用于白天光伏板冷却时,在1 kW m太阳能辐射下,它可以使光伏板温度降低15°C,导致太阳能转换效率提高7.33%。这种水凝胶设计范例将卓越的吸湿性与出色的机械强度相结合,显示出推进实际应用的巨大潜力。