Suppr超能文献

面向实际大气水收集的材料到系统定制多层循环策略

Material-to-system tailored multilayer-cyclic strategy toward practical atmospheric water harvesting.

作者信息

Zhao Yaxuan, Guan Weixin, Wong Yan Zhe, Lei Chuxin, Wang Yuyang, Liu Xiaomeng, Yu Guihua

机构信息

Materials Science and Engineering Program, The University of Texas at Austin, Austin, TX 78712.

Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2500928122. doi: 10.1073/pnas.2500928122. Epub 2025 May 12.

Abstract

Solar-driven atmospheric water harvesting (AWH) presents a sustainable approach for freshwater production with sunlight as the sole energy input. To address challenges posed by diurnal moisture variations and diffusive sunlight, we present a system-wide approach that synergistically enhances moisture capture and solar energy utilization in an integrated water harvester. Moisture utilization at the bulk sorbent scale is improved through the hierarchical pore structure of scalable biomass gel sheets enabling rapid regeneration and is further upscaled to system-level performance through a kinetics-matched, continuously multicyclic operation protocol in a multilayered device. Solar energy utilization is enhanced by thermoresponsive hydrogels that lower the energy threshold for water desorption and by efficient thermal and mass flow management that increases energy efficiency. Our system delivers up to 235.09 mL d of water with an energy efficiency as high as 26.4%, excluding solar panel power. This work offers an insight into developing energy-, material-, and space-efficient AWH systems from a cross-scale understanding of sorbent properties, device engineering, and operation protocol tailoring.

摘要

太阳能驱动的大气取水(AWH)提供了一种可持续的淡水生产方法,仅以阳光作为唯一的能量输入。为应对昼夜湿度变化和散射阳光带来的挑战,我们提出了一种全系统方法,该方法在集成式取水器中协同增强水分捕获和太阳能利用。通过可扩展生物质凝胶片的分级孔隙结构,提高了在大容量吸附剂规模下的水分利用率,实现快速再生,并通过多层装置中动力学匹配的连续多循环操作协议进一步提升至系统级性能。通过降低水解吸能量阈值的热响应水凝胶以及提高能源效率的高效热流和质量流管理,增强了太阳能利用。我们的系统每天可产出高达235.09毫升的水,能源效率高达26.4%(不包括太阳能电池板功率)。这项工作从对吸附剂特性、器件工程和操作协议定制的跨尺度理解出发,为开发节能、材料高效和空间高效的大气取水系统提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7446/12107120/85a3b00c9ee4/pnas.2500928122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验