Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung Mainz, Germany.
Biomed Tech (Berl). 2022 Aug 15;67(5):333-344. doi: 10.1515/bmt-2021-0019. Print 2022 Oct 26.
Transcranial magnetic stimulation (TMS) has widespread clinical applications from diagnosis to treatment. We combined TMS with non-contact magnetic detection of TMS-evoked muscle activity in peripheral limbs to explore a new diagnostic modality that enhances the utility of TMS as a clinical tool by leveraging technological advances in magnetometry. We recorded measurements in a regular hospital room using an array of optically pumped magnetometers (OPMs) inside a portable shield that encloses only the forearm and hand of the subject. We present magnetomyograms (MMG)s of TMS-evoked movement in a human hand, together with a simultaneous surface electromyograph (EMG) data. The biomagnetic signals recorded in the MMG provides detailed spatial and temporal information that is complementary to that of the electric signal channels. Moreover, we identify features in the magnetic recording beyond that of the EMG. This system demonstrates the value of biomagnetic signals in TMS-based clinical approaches and widens its availability and practical potential.
经颅磁刺激(TMS)在从诊断到治疗的各个方面都有广泛的临床应用。我们将 TMS 与 TMS 诱发的外周肢体肌肉活动的非接触磁检测相结合,通过利用磁强计技术的进步,探索了一种新的诊断方式,从而增强 TMS 作为临床工具的实用性。我们使用内置在便携式屏蔽中的光学泵磁强计(OPM)阵列在常规医院房间中记录测量值,该屏蔽仅包围受试者的前臂和手。我们展示了人手中 TMS 诱发运动的磁肌图(MMG),以及同时的表面肌电图(EMG)数据。MMG 中记录的生物磁信号提供了与电信号通道互补的详细时空信息。此外,我们还确定了 EMG 以外的磁记录特征。该系统展示了基于 TMS 的临床方法中生物磁信号的价值,并拓宽了其可用性和实际潜力。