Suppr超能文献

静态-动态协调Transformer 用于肿瘤纵向生长预测。

Static-Dynamic coordinated Transformer for Tumor Longitudinal Growth Prediction.

机构信息

College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, 030000, China.

College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, 030000, China; College of Information, Jinzhong College of Information, Jinzhong, Shanxi, 030600, China.

出版信息

Comput Biol Med. 2022 Sep;148:105922. doi: 10.1016/j.compbiomed.2022.105922. Epub 2022 Aug 2.

Abstract

Accurate prediction of the tumor's future imaging features can provide its complete growth evolution and more detailed clinical parameters. The existing longitudinal models tend to lose detailed growth information and make it difficult to model the complete tumor development process. In this paper, we propose the Static-Dynamic coordinated Transformer for Tumor Longitudinal Growth Prediction (SDC-Transformer). To extract the static high-level features of tumors in each period, and to further explore the dynamic growth associations and expansion trend of tumors between different periods. Aiming at the insensitivity to local pixel information of the Transformer, we propose the Local Adaptive Transformer Module to facilitate a strongly coupled status of feature images, which ensures the characterization of tumor complex growth trends. Faced with the dynamic changes brought about by tumor growth, we introduce the Dynamic Growth Estimation Module to predict the future growth trend of the tumor. As a core part of SDC-Transformer, we design the Enhanced Deformable Convolution to enrich the sampling space of tumor growth pixels. And a novel Cascade Self-Attention is performed under multi-growth imaging to obtain dynamic growth relationships between periods and use dual cascade operations to predict the tumor's future expansion trajectories and growth contours. Our SDC-Transformer is rigorously trained and tested on longitudinal tumor data composed of the National Lung Screening Trial (NLST) and collaborative Shanxi Provincial People's Hospital. The RMSE, Dice, Recall, and Specificity of the longitudinal prediction results reach 11.32, 89.31%, 90.57%, and 89.64%, respectively. This result shows that our proposed SDC-Transformer model can achieve accurate longitudinal prediction of tumors, which will help physicians to establish specific treatment plans and accurately diagnose lung cancer. The code will be released soon.

摘要

准确预测肿瘤未来的影像学特征可以提供其完整的生长演变和更详细的临床参数。现有的纵向模型往往会丢失详细的生长信息,难以对肿瘤的完整发育过程进行建模。在本文中,我们提出了用于肿瘤纵向生长预测的静态-动态协调 Transformer(SDC-Transformer)。为了提取每个时期肿瘤的静态高级特征,并进一步探索肿瘤在不同时期之间的动态生长关联和扩展趋势。针对 Transformer 对局部像素信息不敏感的问题,我们提出了局部自适应 Transformer 模块,以促进特征图像的强耦合状态,从而确保肿瘤复杂生长趋势的特征化。针对肿瘤生长带来的动态变化,我们引入了动态生长估计模块来预测肿瘤的未来生长趋势。作为 SDC-Transformer 的核心部分,我们设计了增强型可变形卷积来丰富肿瘤生长像素的采样空间。并在多生长成像下进行新的级联自注意力,以获得各时期之间的动态生长关系,并使用双级联操作来预测肿瘤未来的扩展轨迹和生长轮廓。我们的 SDC-Transformer 在由国家肺癌筛查试验(NLST)和山西省级人民医院合作组成的纵向肿瘤数据上进行了严格的训练和测试。纵向预测结果的 RMSE、Dice、召回率和特异性分别达到 11.32、89.31%、90.57%和 89.64%。这一结果表明,我们提出的 SDC-Transformer 模型可以实现对肿瘤的准确纵向预测,这将有助于医生制定特定的治疗计划并准确诊断肺癌。代码将很快发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验