Suppr超能文献

用于多变量时间序列预测的融合变压器:门尼粘度预测案例。

A Fusion Transformer for Multivariable Time Series Forecasting: The Mooney Viscosity Prediction Case.

作者信息

Yang Ye, Lu Jiangang

机构信息

State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Zhejiang Laboratory, Hangzhou 311121, China.

出版信息

Entropy (Basel). 2022 Apr 9;24(4):528. doi: 10.3390/e24040528.

Abstract

Multivariable time series forecasting is an important topic of machine learning, and it frequently involves a complex mix of inputs, including static covariates and exogenous time series input. A targeted investigation of this input data is critical for improving prediction performance. In this paper, we propose the fusion transformer (FusFormer), a transformer-based model for forecasting time series data, whose framework fuses various computation modules for time series input and static covariates. To be more precise, the model calculation consists of two parallel stages. First, it employs a temporal encoder-decoder framework for extracting dynamic temporal features from time series data input, which analyzes and integrates the relative position information of sequence elements into the attention mechanism. Simultaneously, the static covariates are fed to the static enrichment module, which is inspired by gated linear units, to suppress irrelevant information and control the extent of nonlinear processing. Finally, the prediction results are calculated by fusing the outputs of the above two stages. Using Mooney viscosity forecasting as a case study, we demonstrate considerable forecasting performance improvements over existing methodologies and verify the effectiveness of each component of FusFormer via ablation analysis, and an interpretability use case is conducted to visualize temporal patterns of time series. The experimental results prove that FusFormer can achieve accurate Mooney viscosity prediction and improve the efficiency of the tire production process.

摘要

多变量时间序列预测是机器学习的一个重要课题,它经常涉及复杂的输入组合,包括静态协变量和外生时间序列输入。对这种输入数据进行有针对性的研究对于提高预测性能至关重要。在本文中,我们提出了融合变压器(FusFormer),这是一种基于变压器的时间序列数据预测模型,其框架融合了用于时间序列输入和静态协变量的各种计算模块。更确切地说,模型计算由两个并行阶段组成。首先,它采用时间编码器 - 解码器框架从时间序列数据输入中提取动态时间特征,该框架将序列元素的相对位置信息分析并整合到注意力机制中。同时,将静态协变量输入到受门控线性单元启发的静态增强模块中,以抑制无关信息并控制非线性处理的程度。最后,通过融合上述两个阶段的输出计算预测结果。以门尼粘度预测为例进行研究,我们证明了与现有方法相比,预测性能有显著提高,并通过消融分析验证了FusFormer各组件的有效性,还进行了一个可解释性用例以可视化时间序列的时间模式。实验结果证明,FusFormer可以实现准确的门尼粘度预测,并提高轮胎生产过程的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d190/9026292/5169c6d70d1d/entropy-24-00528-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验