College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China.
Sensors (Basel). 2022 Jun 17;22(12):4592. doi: 10.3390/s22124592.
Retinal vessel segmentation is extremely important for risk prediction and treatment of many major diseases. Therefore, accurate segmentation of blood vessel features from retinal images can help assist physicians in diagnosis and treatment. Convolutional neural networks are good at extracting local feature information, but the convolutional block receptive field is limited. Transformer, on the other hand, performs well in modeling long-distance dependencies. Therefore, in this paper, a new network model MTPA_Unet is designed from the perspective of extracting connections between local detailed features and making complements using long-distance dependency information, which is applied to the retinal vessel segmentation task. MTPA_Unet uses multi-resolution image input to enable the network to extract information at different levels. The proposed TPA module not only captures long-distance dependencies, but also focuses on the location information of the vessel pixels to facilitate capillary segmentation. The Transformer is combined with the convolutional neural network in a serial approach, and the original MSA module is replaced by the TPA module to achieve finer segmentation. Finally, the network model is evaluated and analyzed on three recognized retinal image datasets DRIVE, CHASE DB1, and STARE. The evaluation metrics were 0.9718, 0.9762, and 0.9773 for accuracy; 0.8410, 0.8437, and 0.8938 for sensitivity; and 0.8318, 0.8164, and 0.8557 for Dice coefficient. Compared with existing retinal image segmentation methods, the proposed method in this paper achieved better vessel segmentation in all of the publicly available fundus datasets tested performance and results.
视网膜血管分割对于许多重大疾病的风险预测和治疗至关重要。因此,准确地从视网膜图像中分割血管特征可以帮助医生进行诊断和治疗。卷积神经网络擅长提取局部特征信息,但卷积块的感受野有限。另一方面,Transformer 在建模长距离依赖关系方面表现出色。因此,本文从提取局部详细特征之间的连接并使用长距离依赖信息进行补充的角度出发,设计了一种新的网络模型 MTPA_Unet,应用于视网膜血管分割任务。MTPA_Unet 使用多分辨率图像输入,使网络能够提取不同层次的信息。所提出的 TPA 模块不仅可以捕获长距离依赖关系,还可以关注血管像素的位置信息,以促进毛细血管分割。Transformer 与卷积神经网络串联使用,原始的 MSA 模块被 TPA 模块取代,以实现更精细的分割。最后,在三个公认的视网膜图像数据集 DRIVE、CHASE DB1 和 STARE 上对网络模型进行评估和分析。评估指标分别为 0.9718、0.9762 和 0.9773 的准确率、0.8410、0.8437 和 0.8938 的敏感度、0.8318、0.8164 和 0.8557 的 Dice 系数。与现有的视网膜图像分割方法相比,本文提出的方法在所有经过测试的公共眼底数据集上都实现了更好的血管分割性能和结果。