Kochetkov Iu V, Bukharskii N D, Ehret M, Abe Y, Law K F F, Ospina-Bohorquez V, Santos J J, Fujioka S, Schaumann G, Zielbauer B, Kuznetsov A, Korneev Ph
National Research Nuclear University MEPhI, Moscow, Russian Federation.
Centre Lasers Intenses et Applications (CELIA), UMR 5107, Université de Bordeaux - CNRS - CEA, Talence, France.
Sci Rep. 2022 Aug 12;12(1):13734. doi: 10.1038/s41598-022-17202-2.
Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit.
千特斯拉级磁场的光学生成能够实现具有前所未有的高磁场能量密度的前瞻性技术和基础研究。一个问题是所提出装置的最佳配置,在该配置中,大量物理现象伴随着磁场的产生,这使得理论研究和实验实现都变得复杂。短激光驱动器在许多应用中似乎更合适,尽管该过程因固有的瞬态特性而变得复杂。在这项工作中,使用人工神经网络来揭示由皮秒激光脉冲激发的磁场的主要特征。经过训练的神经网络获得了从实验数据中读取磁场值的能力,极大地促进了对实验结果的解释。结论是,当感应电流形成闭合回路时,亚皮秒短激光脉冲可能会产生一种存在于百皮秒时间尺度上的准静态磁场结构。