Suppr超能文献

深度学习分析原发性肾病综合征的临床病程:日本肾病综合征队列研究(JNSCS)。

Deep learning analysis of clinical course of primary nephrotic syndrome: Japan Nephrotic Syndrome Cohort Study (JNSCS).

机构信息

Reverse Translational Research Project, Center for Rare Disease Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.

Laboratory of Rare Disease Resource Library, Center for Rare Disease Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.

出版信息

Clin Exp Nephrol. 2022 Dec;26(12):1170-1179. doi: 10.1007/s10157-022-02256-3. Epub 2022 Aug 12.

Abstract

BACKGROUND

Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural history of nephrotic syndrome could be evaluated using objective common clinical items.

METHODS

Machine learning clustering was performed on 205 cases from the Japan Nephrotic Syndrome Cohort Study, whose clinical parameters, serum creatinine, serum albumin, dipstick hematuria, and proteinuria were traceable after kidney biopsy at 5 measured points up to 2 years. The clinical patterns of time-series data were learned using long short-term memory (LSTM)-encoder-decoder architecture, an unsupervised machine learning classifier. Clinical clusters were defined as Gaussian mixture distributions in a two-dimensional scatter plot based on the highest log-likelihood.

RESULTS

Time-series data of nephrotic syndrome were classified into four clusters. Patients in the fourth cluster showed the increase in serum creatinine in the later part of the follow-up period. Patients in both the third and fourth clusters were initially high in both hematuria and proteinuria, whereas a lack of decline in the urinary protein level preceded the worsening of kidney function in fourth cluster. The original diseases of fourth cluster included all the disease studied in this cohort.

CONCLUSIONS

Four kinds of clinical courses were identified in nephrotic syndrome. This classified clinical course may help objectively grasp the actual condition or treatment resistance of individual patients with nephrotic syndrome.

摘要

背景

肾病综合征的预后一直基于病理诊断进行评估,而其临床病程则通过客观指标进行监测,治疗策略也基本相同。我们检验了是否可以使用客观的常见临床指标来评估肾病综合征的整个自然病程。

方法

对日本肾病综合征队列研究中的 205 例患者进行了机器学习聚类分析,这些患者的临床参数、血清肌酐、血清白蛋白、尿潜血和蛋白尿在肾活检后可在 5 个测量点追踪至 2 年。使用长短期记忆(LSTM)-编码器-解码器架构的无监督机器学习分类器学习时间序列数据的模式。临床聚类定义为二维散点图中基于最高对数似然的高斯混合分布。

结果

肾病综合征的时间序列数据被分为 4 个聚类。第 4 个聚类的患者在随访后期血清肌酐升高。第 3 个和第 4 个聚类的患者在初始时血尿和蛋白尿均较高,而第 4 个聚类中尿蛋白水平没有下降,预示着肾功能恶化。第 4 个聚类的原发病包括本队列研究中的所有疾病。

结论

肾病综合征有 4 种临床病程。这种分类的临床病程可能有助于客观掌握肾病综合征患者的实际病情或治疗抵抗情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26dd/9668942/4185b8b0fb8f/10157_2022_2256_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验