Suppr超能文献

利用日本指定不治之症国家数据库的深度学习对系统性红斑狼疮的肾脏损害进行分析。

Profiling of kidney involvement in systemic lupus erythematosus by deep learning using the National Database of Designated Incurable Diseases of Japan.

机构信息

Reverse Translational Research Project, Center for Rare Disease Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.

Laboratory of Rare Disease Resource Library, Center for Rare Disease Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.

出版信息

Clin Exp Nephrol. 2023 Jun;27(6):519-527. doi: 10.1007/s10157-023-02337-x. Epub 2023 Mar 16.

Abstract

BACKGROUND

Kidney involvement frequently occurs in systemic lupus erythematosus (SLE), and its clinical manifestations are complicated. We profiled kidney involvement in SLE patients using deep learning based on data from the National Database of Designated Incurable Diseases of Japan.

METHODS

We analyzed the cross-sectional data of 1655 patients with SLE whose Personal Clinical Records were newly registered between 2015 and 2017. We trained an artificial neural network using clinical data, and the extracted characteristics were evaluated using an autoencoder. We tested the difference of population proportions to analyze the correlation between the presence or absence of kidney involvement and that of other clinical manifestations.

RESULTS

Data of patients with SLE were compressed in a feature space in which the anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibody titer, antinuclear antibody titer, or white blood cell count contributed significantly to distinguishing patients. Many SLE manifestations were accompanied by kidney involvement, whereas in a subgroup of patients with high anti-dsDNA antibody titers and low antinuclear antibody titers, kidney involvement was positively and negatively correlated with hemolytic anemia and inflammatory manifestations, respectively.

CONCLUSION

Although there are various combinations of SLE manifestations, our study revealed that some of them are specific to kidney involvement. SLE profiles extracted from the objective analysis will be useful for categorizing SLE manifestations.

摘要

背景

肾脏受累在系统性红斑狼疮(SLE)中经常发生,其临床表现较为复杂。我们基于日本指定不治之症国家数据库的数据,利用深度学习对 SLE 患者的肾脏受累情况进行了分析。

方法

我们分析了 2015 年至 2017 年间新登记的 1655 例 SLE 患者的个人临床记录的横断面数据。我们使用临床数据训练人工神经网络,使用自动编码器评估提取的特征。我们通过检测人口比例的差异来分析肾脏受累与其他临床表现之间的相关性。

结果

SLE 患者的数据在特征空间中被压缩,其中抗双链脱氧核糖核酸(抗 dsDNA)抗体滴度、抗核抗体滴度或白细胞计数对区分患者具有重要贡献。许多 SLE 表现伴有肾脏受累,而在抗 dsDNA 抗体滴度高、抗核抗体滴度低的患者亚组中,肾脏受累与溶血性贫血和炎症表现分别呈正相关和负相关。

结论

尽管 SLE 表现有多种组合,但本研究表明其中一些表现与肾脏受累有关。从客观分析中提取的 SLE 特征图谱将有助于对 SLE 表现进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff8/10191896/0406f74d076f/10157_2023_2337_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验