Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Cell. 2019 Apr 4;177(2):463-477.e15. doi: 10.1016/j.cell.2019.02.018.
To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.
为了开发一个由细胞外 RNA (exRNA)介导的细胞间通讯图谱,NIH 细胞外 RNA 通讯联盟创建了 exRNA 图谱资源(https://exrna-atlas.org)。图谱版本 4P1 包含了来自 19 项研究的 5309 个 exRNA-seq 和 exRNA qPCR 图谱,以及一系列分析和可视化工具。为了分析图谱之间的差异,我们应用了计算去卷积。分析结果得到了一个具有六种 exRNA 货物类型(CT1、CT2、CT3A、CT3B、CT3C、CT4)的模型,每种货物类型都可以在多种生物体液(血清、血浆、CSF、唾液、尿液)中检测到。其中五种货物类型与已知的囊泡和非囊泡(脂蛋白和核糖核蛋白)exRNA 载体有关。为了验证该模型的实用性,我们通过去卷积重新分析了一项运动反应研究,以确定以前未检测到的与生理相关的反应途径。为了使该模型能够广泛应用,作为 exRNA 图谱资源的一部分,我们提供了用于用户提供的病例对照研究的去卷积和分析工具。