Suppr超能文献

dsDNA 解链的体积变化。

The volume changes of unfolding of dsDNA.

机构信息

Departments of Biological Sciences, Chemistry, and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.

Departments of Biological Sciences, Chemistry, and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.

出版信息

Biophys J. 2022 Dec 20;121(24):4892-4899. doi: 10.1016/j.bpj.2022.08.005. Epub 2022 Aug 11.

Abstract

High hydrostatic pressure can have profound effects on the stability of biomacromolecules. The magnitude and direction (stabilizing or destabilizing) of this effect is defined by the volume changes in the system, ΔV. Positive volume changes will stabilize the starting native state, whereas negative volume changes will lead to the stabilization of the final unfolded state. For the DNA double helix, experimental data suggested that when the thermostability of dsDNA is below 50°C, increase in hydrostatic pressure will lead to destabilization; i.e., helix-to-coil transition has negative ΔV. In contrast, the dsDNA sequences with the thermostability above 50°C showed positive ΔV values and were stabilized by hydrostatic pressure. In order to get insight into this switch in the response of dsDNA to hydrostatic pressure as a function of temperature, first we further validated this trend using experimental measurements of ΔV for 10 different dsDNA sequences using pressure perturbation calorimetry. We also developed a computational protocol to calculate the expected volume changes of dsDNA unfolding, which was benchmarked against the experimental set of 50 ΔV values that included, in addition to our data, the values from the literature. Computation predicts well the experimental values of ΔV. Such agreement between computation and experiment lends credibility to the computation protocol and provides molecular level rational for the observed temperature dependence of ΔV that can be traced to the hydration. Difference in the ΔV value for A/T versus G/C basepairs is also discussed.

摘要

高静水压力对生物大分子的稳定性有深远的影响。这种影响的大小和方向(稳定或不稳定)由系统的体积变化 ΔV 来定义。正的体积变化将稳定起始的天然状态,而负的体积变化将导致最终的无规卷曲状态的稳定。对于 DNA 双螺旋,实验数据表明,当 dsDNA 的热稳定性低于 50°C 时,静水压力的增加将导致失稳;即螺旋到线圈的转变具有负 ΔV。相比之下,热稳定性高于 50°C 的 dsDNA 序列表现出正 ΔV 值,并被静水压力稳定。为了深入了解 dsDNA 对静水压力的响应随温度的这种转变,我们首先使用压力扰动量热法进一步验证了 10 种不同 dsDNA 序列的 ΔV 的实验测量结果,证实了这一趋势。我们还开发了一种计算协议来计算 dsDNA 展开的预期体积变化,并用包括我们的数据以及文献中值的 50 个 ΔV 值的实验数据集对其进行了基准测试。计算很好地预测了 ΔV 的实验值。计算和实验之间的这种一致性为计算协议提供了可信度,并为观察到的 ΔV 随温度的依赖性提供了分子水平的解释,这可以追溯到水合作用。还讨论了 A/T 与 G/C 碱基对的 ΔV 值的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4716/9811605/ee2bf61ae3c1/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验