Faculty of Chemistry and Chemical technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
J Phys Chem Lett. 2024 Sep 5;15(35):9064-9069. doi: 10.1021/acs.jpclett.4c01563. Epub 2024 Aug 28.
High pressure affects the structure and function of DNA and is a key parameter for studying the origin and physical limits of life. Different types of DNA structures systematically show a linear pressure dependence of thermal stability (up to ∼200 MPa), which is maintained even when the solution composition is changed. The reasons behind the linear pressure dependence are not understood. We have performed a thermodynamic analysis of the pressure-, temperature- and composition-dependent (un)folding of various polynucleotide duplexes and G-quadruplexes. We demonstrate that the reason for the observed linearity is the link between compressibility and expansibility, both of which largely depend on DNA hydration. We predicted the temperature and pressure dependence of compressibility and expansibility of (un)folding and explain how they affect the corresponding volume change and thermodynamic stability parameters. These predictions indicate the existence of a convergence temperature at which compressibility and volume of (un)folding simultaneously become equal to zero.
高压会影响 DNA 的结构和功能,是研究生命起源和物理极限的关键参数。不同类型的 DNA 结构系统地表现出热稳定性与压力呈线性关系(最高可达约 200MPa),即使溶液组成发生变化也是如此。导致这种线性关系的原因尚不清楚。我们对各种多核苷酸双链体和 G-四联体的压力、温度和组成依赖性(解)折叠进行了热力学分析。我们证明,观察到的线性关系的原因是压缩性和可扩展性之间的联系,这两者在很大程度上都取决于 DNA 的水合作用。我们预测了解折叠的压缩性和可扩展性的温度和压力依赖性,并解释了它们如何影响相应的体积变化和热力学稳定性参数。这些预测表明存在一个收敛温度,在该温度下,解折叠的压缩性和体积同时变为零。