Suppr超能文献

通过带有 C 特征的 MG 算法构建有效和无效 siRNA 之间的边界。

Constructing the boundary between potent and ineffective siRNAs by MG-algorithm with C-features.

机构信息

School of Mathematics, Southeast University, Nanjing, 210096, People's Republic of China.

Department of Mathematics, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.

出版信息

BMC Bioinformatics. 2022 Aug 13;23(1):337. doi: 10.1186/s12859-022-04867-9.

Abstract

BACKGROUND

In siRNA based antiviral therapeutics, selection of potent siRNAs is an indispensable step, but these commonly used features are unable to construct the boundary between potent and ineffective siRNAs.

RESULTS

Here, we select potent siRNAs by removing ineffective ones, where these conditions for removals are constructed by C-features of siRNAs, C-features are generated by MG-algorithm, Icc-cluster and the different combinations of some commonly used features, MG-algorithm and Icc-cluster are two different algorithms to search the nearest siRNA neighbors. For the ineffective siRNAs in test data, they are removed from test data by I-iteration, where I-iteration continually updates training data by adding these successively removed siRNAs. Furthermore, the efficacy of siRNAs of test data is predicted by their nearest neighbors of training data.

CONCLUSIONS

By siRNAs of Hencken dataset, results show that our algorithm removes almost ineffective siRNAs from test data, gives the clear boundary between potent and ineffective siRNAs, and accurately predicts the efficacy of siRNAs also. We suggest that our algorithm can provide new insights for selecting the potent siRNAs.

摘要

背景

在基于 siRNA 的抗病毒治疗中,选择有效的 siRNA 是不可或缺的一步,但这些常用的特征无法构建有效和无效 siRNA 之间的界限。

结果

在这里,我们通过去除无效的 siRNA 来选择有效的 siRNA,其中这些去除条件是通过 siRNA 的 C 特征构建的,C 特征是由 MG 算法、Icc 聚类和一些常用特征的不同组合生成的,MG 算法和 Icc 聚类是两种不同的算法,用于搜索最近的 siRNA 邻居。对于测试数据中的无效 siRNA,它们通过 I 迭代从测试数据中删除,其中 I 迭代通过不断添加这些依次删除的 siRNA来更新训练数据。此外,通过训练数据中 siRNA 的最近邻居来预测测试数据中 siRNA 的功效。

结论

通过 Hencken 数据集的 siRNA,结果表明我们的算法从测试数据中几乎去除了所有无效的 siRNA,在有效和无效 siRNA 之间给出了明确的界限,并且还能准确预测 siRNA 的功效。我们建议我们的算法可以为选择有效的 siRNA 提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/9375269/795221e2fe5f/12859_2022_4867_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验