Suppr超能文献

基于多种选择性 siRNA 表示及其在评分水平上的组合来预测 siRNA 功效。

Predicting siRNA efficacy based on multiple selective siRNA representations and their combination at score level.

机构信息

Northeast Normal University, School of Computer Science and Information Technology, Changchun, 130117, China.

Northeast Normal University, School of Environment, Changchun, 130117, China.

出版信息

Sci Rep. 2017 Mar 20;7:44836. doi: 10.1038/srep44836.

Abstract

Small interfering RNAs (siRNAs) may induce to targeted gene knockdown, and the gene silencing effectiveness relies on the efficacy of the siRNA. Therefore, the task of this paper is to construct an effective siRNA prediction method. In our work, we try to describe siRNA from both quantitative and qualitative aspects. For quantitative analyses, we form four groups of effective features, including nucleotide frequencies, thermodynamic stability profile, thermodynamic of siRNA-mRNA interaction, and mRNA related features, as a new mixed representation, in which thermodynamic of siRNA-mRNA interaction is introduced to siRNA efficacy prediction for the first time to our best knowledge. And then an F-score based feature selection is employed to investigate the contribution of each feature and remove the weak relevant features. Meanwhile, we encode the siRNA sequence and existed empirical design rules as a qualitative siRNA representation. These two kinds of siRNA representations are combined to predict siRNA efficacy by supported Vector Regression (SVR) at score level. The experimental results indicate that our method may select the features with powerful discriminative ability and make the two kinds of siRNA representations work at full capacity. The prediction results also demonstrate that our method can outperform other popular siRNA efficacy prediction algorithms.

摘要

小干扰 RNA(siRNA)可诱导靶向基因敲低,基因沉默效果取决于 siRNA 的功效。因此,本文的任务是构建一种有效的 siRNA 预测方法。在我们的工作中,我们试图从定量和定性两个方面来描述 siRNA。对于定量分析,我们形成了四组有效的特征,包括核苷酸频率、热力学稳定性分布、siRNA-mRNA 相互作用的热力学和 mRNA 相关特征,作为一种新的混合表示,其中 siRNA-mRNA 相互作用的热力学是首次引入到 siRNA 功效预测中,据我们所知。然后,我们采用基于 F 分数的特征选择来研究每个特征的贡献,并去除弱相关特征。同时,我们将 siRNA 序列和已有的经验设计规则编码为定性 siRNA 表示。这两种 siRNA 表示通过支持向量回归(SVR)在评分水平上进行组合,以预测 siRNA 的功效。实验结果表明,我们的方法可以选择具有强大判别能力的特征,并使这两种 siRNA 表示充分发挥作用。预测结果还表明,我们的方法可以优于其他流行的 siRNA 功效预测算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2765/5357899/638bed356206/srep44836-f1.jpg

相似文献

2
Utilizing Selected Di- and Trinucleotides of siRNA to Predict RNAi Activity.
Comput Math Methods Med. 2017;2017:5043984. doi: 10.1155/2017/5043984. Epub 2017 Jan 24.
3
SiRNA silencing efficacy prediction based on a deep architecture.
BMC Genomics. 2018 Sep 24;19(Suppl 7):669. doi: 10.1186/s12864-018-5028-8.
5
Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.
BMC Bioinformatics. 2010 Apr 10;11:181. doi: 10.1186/1471-2105-11-181.
6
Efficient siRNA selection using hybridization thermodynamics.
Nucleic Acids Res. 2008 Feb;36(2):640-7. doi: 10.1093/nar/gkm920. Epub 2007 Dec 10.
7
Influence of mRNA features on siRNA interference efficacy.
J Bioinform Comput Biol. 2013 Jun;11(3):1341004. doi: 10.1142/S0219720013410047. Epub 2013 Feb 18.
8
Bioinformatics of siRNA design.
Methods Mol Biol. 2014;1097:477-90. doi: 10.1007/978-1-62703-709-9_22.
9
Is the Efficiency of RNA Silencing Evolutionarily Regulated?
Int J Mol Sci. 2016 May 12;17(5):719. doi: 10.3390/ijms17050719.
10
Precise and efficient siRNA design: a key point in competent gene silencing.
Cancer Gene Ther. 2016 Apr;23(4):73-82. doi: 10.1038/cgt.2016.4. Epub 2016 Mar 18.

引用本文的文献

1
Small interfering RNA: From designing to therapeutic in cancer.
J Genet Eng Biotechnol. 2025 Jun;23(2):100484. doi: 10.1016/j.jgeb.2025.100484. Epub 2025 Apr 3.
2
Design, pharmacology, and toxicology of a novel chemically modified siRNA targeting hepatic angiotensinogen.
Mol Ther Nucleic Acids. 2025 Apr 17;36(2):102542. doi: 10.1016/j.omtn.2025.102542. eCollection 2025 Jun 10.
5
A Graph Neural Network Approach for the Analysis of siRNA-Target Biological Networks.
Int J Mol Sci. 2022 Nov 17;23(22):14211. doi: 10.3390/ijms232214211.
6
Cheminformatics Modeling of Gene Silencing for Both Natural and Chemically Modified siRNAs.
Molecules. 2022 Sep 28;27(19):6412. doi: 10.3390/molecules27196412.
7
Constructing the boundary between potent and ineffective siRNAs by MG-algorithm with C-features.
BMC Bioinformatics. 2022 Aug 13;23(1):337. doi: 10.1186/s12859-022-04867-9.
9
Systematics for types and effects of RNA variations.
RNA Biol. 2021 Apr;18(4):481-498. doi: 10.1080/15476286.2020.1817266. Epub 2020 Sep 20.
10
SiRNA silencing efficacy prediction based on a deep architecture.
BMC Genomics. 2018 Sep 24;19(Suppl 7):669. doi: 10.1186/s12864-018-5028-8.

本文引用的文献

1
A semi-supervised tensor regression model for siRNA efficacy prediction.
BMC Bioinformatics. 2015 Mar 13;16:80. doi: 10.1186/s12859-015-0495-2.
2
The effect of regions flanking target site on siRNA potency.
Genomics. 2013 Oct;102(4):215-22. doi: 10.1016/j.ygeno.2013.07.009. Epub 2013 Jul 25.
3
Influence of mRNA features on siRNA interference efficacy.
J Bioinform Comput Biol. 2013 Jun;11(3):1341004. doi: 10.1142/S0219720013410047. Epub 2013 Feb 18.
4
MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).
J Biomed Inform. 2012 Jun;45(3):528-34. doi: 10.1016/j.jbi.2012.02.005. Epub 2012 Feb 25.
5
siPRED: predicting siRNA efficacy using various characteristic methods.
PLoS One. 2011;6(11):e27602. doi: 10.1371/journal.pone.0027602. Epub 2011 Nov 10.
6
Predicting siRNA potency with random forests and support vector machines.
BMC Genomics. 2010 Dec 1;11 Suppl 3(Suppl 3):S2. doi: 10.1186/1471-2164-11-S3-S2.
7
A user's guide to support vector machines.
Methods Mol Biol. 2010;609:223-39. doi: 10.1007/978-1-60327-241-4_13.
8
NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure.
Nucleic Acids Res. 2010 Jan;38(Database issue):D280-2. doi: 10.1093/nar/gkp892. Epub 2009 Oct 30.
9
An overview of statistical learning theory.
IEEE Trans Neural Netw. 1999;10(5):988-99. doi: 10.1109/72.788640.
10
Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities.
Nucleic Acids Res. 2007;35(18):e123. doi: 10.1093/nar/gkm699. Epub 2007 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验