Suppr超能文献

基于深度架构的 siRNA 沉默效率预测。

SiRNA silencing efficacy prediction based on a deep architecture.

机构信息

School of Information Technology, Jilin Agricultural University, Changchun, China.

School of Information Science and Technology, Northeast Normal University, Changchun, China.

出版信息

BMC Genomics. 2018 Sep 24;19(Suppl 7):669. doi: 10.1186/s12864-018-5028-8.

Abstract

BACKGROUND

Small interfering RNA (siRNA) can be used to post-transcriptional gene regulation by knocking down targeted genes. In functional genomics, biomedical research and cancer therapeutics, siRNA design is a critical research topic. Various computational algorithms have been developed to select the most effective siRNA, whereas the efficacy prediction accuracy is not so satisfactory. Many existing computational methods are based on feature engineering, which may lead to biased and incomplete features. Deep learning utilizes non-linear mapping operations to detect potential feature pattern and has been considered perform better than existing machine learning method.

RESULTS

In this paper, to further improve the prediction accuracy and facilitate gene functional studies, we developed a new powerful siRNA efficacy predictor based on a deep architecture. First, we extracted hidden feature patterns from two modalities, including sequence context features and thermodynamic property. Then, we constructed a deep architecture to implement the prediction. On the available largest siRNA database, the performance of our proposed method was measured with 0.725 PCC and 0.903 AUC value. The comparative experiment showed that our proposed architecture outperformed several siRNA prediction methods.

CONCLUSIONS

The results demonstrate that our deep architecture is stable and efficient to predict siRNA silencing efficacy. The method could help select candidate siRNA for targeted mRNA, and further promote the development of RNA interference.

摘要

背景

小干扰 RNA (siRNA) 可通过敲低靶向基因来进行转录后基因调控。在功能基因组学、生物医学研究和癌症治疗中,siRNA 设计是一个关键的研究课题。已经开发了各种计算算法来选择最有效的 siRNA,而疗效预测的准确性并不令人满意。许多现有的计算方法都是基于特征工程的,这可能导致有偏差和不完整的特征。深度学习利用非线性映射操作来检测潜在的特征模式,被认为比现有的机器学习方法表现更好。

结果

在本文中,为了进一步提高预测准确性,方便基因功能研究,我们开发了一种基于深度架构的新型强大的 siRNA 疗效预测器。首先,我们从两个模态中提取隐藏的特征模式,包括序列上下文特征和热力学特性。然后,我们构建了一个深度架构来实现预测。在现有的最大的 siRNA 数据库上,我们提出的方法的性能用 0.725 的 PCC 和 0.903 的 AUC 值进行了衡量。对比实验表明,我们提出的架构优于几种 siRNA 预测方法。

结论

结果表明,我们的深度架构在预测 siRNA 沉默效率方面是稳定且高效的。该方法可以帮助选择靶向 mRNA 的候选 siRNA,进一步推动 RNA 干扰的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29c/6157246/a4dacb2c6aa2/12864_2018_5028_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验