Vasile Raluca Loredana, Godoy Agustín Alejandro, Puente Orench Inés, Nemes Norbert M, de la Peña O'Shea Víctor A, Gutiérrez-Puebla Enrique, Martínez Jose Luis, Monge M Ángeles, Gándara Felipe
Materials Science Institute of Madrid-Spanish National Research Council (ICMM-CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
Instituto de Investigación en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, Alte. Brown 1450, D5700HGC San Luis, Argentina.
Chem Mater. 2022 Aug 9;34(15):7029-7041. doi: 10.1021/acs.chemmater.2c01481. Epub 2022 Jul 25.
The incorporation of multiple metal atoms in multivariate metal-organic frameworks is typically carried out through a one-pot synthesis procedure that involves the simultaneous reaction of the selected elements with the organic linkers. In order to attain control over the distribution of the elements and to be able to produce materials with controllable metal combinations, it is required to understand the synthetic and crystallization processes. In this work, we have completed a study with the RPF-4 MOF family, which is made of various rare-earth elements, to investigate and determine how the different initial combinations of metal cations result in different atomic distributions in the obtained materials. Thus, we have found that for equimolar combinations involving lanthanum and another rare-earth element, such as ytterbium, gadolinium, or dysprosium, a compositional segregation takes place in the products, resulting in crystals with different compositions. On the contrary, binary combinations of ytterbium, gadolinium, erbium, and dysprosium result in homogeneous distributions. This dissimilar behavior is ascribed to differences in the crystallization pathways through which the MOF is formed. Along with the synthetic and crystallization study and considering the structural features of this MOF family, we also disclose here a comprehensive characterization of the magnetic properties of the compounds and the heat capacity behavior under different external magnetic fields.
在多元金属有机框架中引入多个金属原子通常通过一锅法合成程序来实现,该程序涉及所选元素与有机连接体的同时反应。为了控制元素的分布并能够生产具有可控金属组合的材料,需要了解合成和结晶过程。在这项工作中,我们对由各种稀土元素组成的RPF - 4金属有机框架家族进行了一项研究,以调查和确定金属阳离子的不同初始组合如何在所得材料中导致不同的原子分布。因此,我们发现,对于涉及镧和另一种稀土元素(如镱、钆或镝)的等摩尔组合,产物中会发生成分偏析,从而产生具有不同组成的晶体。相反,镱、钆、铒和镝的二元组合会导致均匀分布。这种不同的行为归因于形成金属有机框架的结晶途径的差异。除了合成和结晶研究,并考虑到该金属有机框架家族的结构特征,我们在此还披露了化合物磁性和不同外部磁场下热容量行为的全面表征。