Kushwaha Anoop Kumar, Sahoo Mihir Ranjan, Ray Mausumi, Das Debashish, Nayak Suryakanta, Maity Apurba, Sarkar Kuntal, Bhagat Amar Nath, Pal Atanu Ranjan, Rout Tapan Kumar, Nayak Saroj Kumar
School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khordha 752050, Odisha, India.
Harish-Chandra Research Institute, HBNI, Prayagraj 211019, Uttar Pradesh, India.
ACS Omega. 2022 Aug 1;7(31):27116-27125. doi: 10.1021/acsomega.2c01299. eCollection 2022 Aug 9.
Corrosion of metal/steel is a major concern in terms of safety, durability, cost, and environment. We have studied a cost-effective, nontoxic, and environmentally friendly pyromellitic diimide (PMDI) compound as a corrosion inhibitor for galvanized steel through density functional theory. An atomic-scale engineering through the functionalization of PMDI is performed to showcase the enhancement in corrosion inhibition and strengthen the interaction between functionalized PMDI (F-PMDI) and zinc oxide (naturally existing on galvanized steel). PMDI is functionalized with methyl/diamine groups (inh1 (R = -CH, R' = -CH), inh2 (R = -CH, R' = -CHCHNH), and inh3 (R = -CH(NH), R' = -CHCHNH). The corrosion inhibition parameters (e.g., orbital energies, electronegativity, dipole moment, global hardness, and electron transfer) indicate the superior corrosion inhibition performance of inh3 (inh3 > inh2 > inh1). Inh3 (∼182.38 kJ/mol) strongly interacts with ZnO(101̅0) compared to inh2 (∼122.56 kJ/mol) and inh1 (∼119.66 kJ/mol). The superior performance of inh3 has been probed through charge density and density of states. Larger available states of N and H (of inh3) interact strongly with Zn and O (of the surface), respectively, creating N-Zn and H-O bonds. Interestingly, these bonds only appear in inh3. The charge accumulation on O, and depletion on H(s), further strengthens the bonding between inh3 and ZnO(101̅0). The microscopic understanding obtained in this study will be useful to develop low-cost and efficient corrosion inhibitors for galvanized steel.
金属/钢铁的腐蚀在安全性、耐久性、成本和环境方面都是一个主要问题。我们通过密度泛函理论研究了一种具有成本效益、无毒且环保的均苯四甲酸二酰亚胺(PMDI)化合物作为镀锌钢的缓蚀剂。通过对PMDI进行功能化处理进行原子尺度工程,以展示缓蚀性能的增强,并加强功能化PMDI(F-PMDI)与氧化锌(自然存在于镀锌钢表面)之间的相互作用。PMDI用甲基/二胺基团进行功能化(inh1(R = -CH,R' = -CH),inh2(R = -CH,R' = -CHCHNH)和inh3(R = -CH(NH),R' = -CHCHNH))。缓蚀参数(如轨道能量、电负性、偶极矩、全局硬度和电子转移)表明inh3具有卓越的缓蚀性能(inh3 > inh2 > inh1)。与inh2(约122.56 kJ/mol)和inh1(约119.66 kJ/mol)相比,inh3(约182.38 kJ/mol)与ZnO(101̅0)的相互作用更强。通过电荷密度和态密度探究了inh3的卓越性能。(inh3的)N和H的更多可用态分别与(表面的)Zn和O强烈相互作用,形成N-Zn键和H-O键。有趣的是,这些键仅在inh3中出现。O上的电荷积累以及H上的电荷耗尽,进一步加强了inh3与ZnO(101̅0)之间的键合。本研究中获得的微观认识将有助于开发低成本且高效的镀锌钢缓蚀剂。