Suppr超能文献

基于密度泛函理论和原子模拟的ZnO(10(-)10)和(11(-)20)表面的表面结构

Surface structure of (10(-)10) and (11(-)20) surfaces of ZnO with density functional theory and atomistic simulation.

作者信息

Cooke David J, Marmier Arnaud, Parker Stephen C

机构信息

Department of Chemistry, University of Bath, BATH, United Kingdom.

出版信息

J Phys Chem B. 2006 Apr 20;110(15):7985-91. doi: 10.1021/jp0564445.

Abstract

We have calculated the stability of two of the low-index surfaces known to dominate the morphology of ZnO as a function of stoichiometry. These two surfaces are (10(-)10) and (11(-)20). In each case, two terminations only are stable for a significant range of oxygen and hydrogen chemical potential: the pure stoichiometric surface and a surface covered in a monolayer of water. The mode by which the water adsorbs is however different for the two surfaces considered. On the (10(-)10) surface the close proximity of the water molecules means hydrogen bonding can occur between adjacent chemiabsorbed water molecules and hence there is little difference in the stability of the hydrated and hydroxylated surface, and in fact the most stable surface occurs with a combination of dissociated and undissociated water adsorption. In the case of the (11(-)20) surface, it is only when full dissociation has occurred that a hydrogen-bonding network can form. Our results also show good agreement between DFT and atomistic simulations, suggesting that potential based methods can usefully be applied to ZnO.

摘要

我们已经计算了已知主导氧化锌形态的两个低指数表面的稳定性,其作为化学计量比的函数。这两个表面是(10(-)10)和(11(-)20)。在每种情况下,对于显著范围的氧和氢化学势,只有两种终止态是稳定的:纯化学计量表面和覆盖有单层水的表面。然而,对于所考虑的两个表面,水吸附的模式是不同的。在(10(-)10)表面上,水分子的紧密接近意味着相邻化学吸附水分子之间可以发生氢键作用,因此水合表面和羟基化表面的稳定性几乎没有差异,实际上最稳定的表面是解离和未解离水吸附的组合。在(11(-)20)表面的情况下,只有当完全解离发生时才能形成氢键网络。我们的结果还表明密度泛函理论(DFT)和原子模拟之间有很好的一致性,这表明基于势的方法可以有效地应用于氧化锌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验