Suppr超能文献

开源磁共振成像和重建工作流程。

Open-source MR imaging and reconstruction workflow.

机构信息

MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

MR R&D Collaborations, Siemens Medical Solutions USA Inc, Chicago, Illinois.

出版信息

Magn Reson Med. 2022 Dec;88(6):2395-2407. doi: 10.1002/mrm.29384. Epub 2022 Aug 15.

Abstract

PURPOSE

This work presents an end-to-end open-source MR imaging workflow. It is highly flexible in rapid prototyping across the whole imaging process and integrates vendor-independent openly available tools. The whole workflow can be shared and executed on different MR platforms. It is also integrated in the JEMRIS simulation framework, which makes it possible to generate simulated data from the same sequence that runs on the MRI scanner using the same pipeline for image reconstruction.

METHODS

MRI sequences can be designed in Python or JEMRIS using the Pulseq framework, allowing simplified integration of new sequence design tools. During the sequence design process, acquisition metadata required for reconstruction is stored in the MR raw data format. Data acquisition is possible on MRI scanners supported by Pulseq and in simulations through JEMRIS. An image reconstruction and postprocessing pipeline was implemented into a Python server that allows real-time processing of data as it is being acquired. The Berkeley Advanced Reconstruction Toolbox is integrated into this framework for image reconstruction. The reconstruction pipeline supports online integration through a vendor-dependent interface.

RESULTS

The flexibility of the workflow is demonstrated with different examples, containing 3D parallel imaging with controlled aliasing in volumetric parallel imaging (CAIPIRINHA) acceleration, spiral imaging, and B mapping. All sequences, data, and the corresponding processing pipelines are publicly available.

CONCLUSION

The proposed workflow is highly flexible and allows integration of advanced tools at all stages of the imaging process. All parts of this workflow are open-source, simplifying collaboration across different MR platforms or sites and improving reproducibility of results.

摘要

目的

本工作提出了一个端到端的开源磁共振成像工作流程。它在整个成像过程中的快速原型设计中具有高度的灵活性,并集成了与供应商无关的开源工具。整个工作流程可以在不同的磁共振平台上共享和执行。它还集成在 JEMRIS 模拟框架中,这使得可以使用在 MRI 扫描仪上运行的相同序列从相同序列生成模拟数据,使用相同的图像重建管道进行图像重建。

方法

可以使用 Pulseq 框架在 Python 或 JEMRIS 中设计 MRI 序列,从而简化新序列设计工具的集成。在序列设计过程中,重建所需的采集元数据存储在 MR 原始数据格式中。可以在 Pulseq 支持的 MRI 扫描仪上以及通过 JEMRIS 进行模拟中进行数据采集。实现了一个图像重建和后处理管道到 Python 服务器中,允许实时处理正在采集的数据。Berkeley 高级重建工具箱集成到这个框架中用于图像重建。该重建管道支持通过与供应商相关的接口进行在线集成。

结果

通过不同的示例展示了工作流程的灵活性,其中包含具有容积并行成像(CAIPIRINHA)加速的控制混杂的 3D 并行成像、螺旋成像和 B 映射。所有序列、数据和相应的处理管道都公开可用。

结论

所提出的工作流程具有高度的灵活性,并允许在成像过程的所有阶段集成先进的工具。该工作流程的所有部分都是开源的,简化了不同磁共振平台或站点之间的协作,并提高了结果的可重复性。

相似文献

1
Open-source MR imaging and reconstruction workflow.
Magn Reson Med. 2022 Dec;88(6):2395-2407. doi: 10.1002/mrm.29384. Epub 2022 Aug 15.
3
Pulseq: A rapid and hardware-independent pulse sequence prototyping framework.
Magn Reson Med. 2017 Apr;77(4):1544-1552. doi: 10.1002/mrm.26235. Epub 2016 Jun 7.
4
Reduced cross-scanner variability using vendor-agnostic sequences for single-shell diffusion MRI.
Magn Reson Med. 2024 Jul;92(1):246-256. doi: 10.1002/mrm.30062. Epub 2024 Mar 12.
5
NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
Neuroimage. 2020 Oct 1;219:117020. doi: 10.1016/j.neuroimage.2020.117020. Epub 2020 Jun 6.
7
KomaMRI.jl: An open-source framework for general MRI simulations with GPU acceleration.
Magn Reson Med. 2023 Jul;90(1):329-342. doi: 10.1002/mrm.29635. Epub 2023 Mar 6.
8
Real-time volumetric MR thermometry using 3D echo-shifted sequence under an open source reconstruction platform.
Magn Reson Imaging. 2020 Jul;70:22-28. doi: 10.1016/j.mri.2020.04.001. Epub 2020 Apr 4.
9
ISMRM Raw data format: A proposed standard for MRI raw datasets.
Magn Reson Med. 2017 Jan;77(1):411-421. doi: 10.1002/mrm.26089. Epub 2016 Jan 29.
10
Gadgetron: an open source framework for medical image reconstruction.
Magn Reson Med. 2013 Jun;69(6):1768-76. doi: 10.1002/mrm.24389. Epub 2012 Jul 12.

引用本文的文献

1
Gpu-accelerated JEMRIS for extensive MRI simulations.
MAGMA. 2025 Sep 4. doi: 10.1007/s10334-025-01281-z.
2
Vendor-agnostic 3D multiparametric relaxometry improves cross-platform reproducibility.
Magn Reson Med. 2025 Sep;94(3):937-948. doi: 10.1002/mrm.30566. Epub 2025 May 26.
3
Rethinking MRI as a measurement device through modular and portable pipelines.
MAGMA. 2025 Apr 24. doi: 10.1007/s10334-025-01245-3.
4
Myelin water fraction mapping with joint inversion of gradient-echo and spin-echo data.
MAGMA. 2025 Apr;38(2):317-332. doi: 10.1007/s10334-025-01235-5. Epub 2025 Mar 7.
6
Strategies for Implementing Machine Learning Algorithms in the Clinical Practice of Radiology.
Radiology. 2024 Jan;310(1):e223170. doi: 10.1148/radiol.223170.
8
KomaMRI.jl: An open-source framework for general MRI simulations with GPU acceleration.
Magn Reson Med. 2023 Jul;90(1):329-342. doi: 10.1002/mrm.29635. Epub 2023 Mar 6.

本文引用的文献

1
A gradient optimization toolbox for general purpose time-optimal MRI gradient waveform design.
Magn Reson Med. 2020 Dec;84(6):3234-3245. doi: 10.1002/mrm.28384. Epub 2020 Jul 7.
2
CG-SENSE revisited: Results from the first ISMRM reproducibility challenge.
Magn Reson Med. 2021 Apr;85(4):1821-1839. doi: 10.1002/mrm.28569. Epub 2020 Nov 12.
3
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
4
Flow MRI simulation in complex 3D geometries: Application to the cerebral venous network.
Magn Reson Med. 2018 Oct;80(4):1655-1665. doi: 10.1002/mrm.27114. Epub 2018 Feb 5.
5
TOPPE: A framework for rapid prototyping of MR pulse sequences.
Magn Reson Med. 2018 Jun;79(6):3128-3134. doi: 10.1002/mrm.26990. Epub 2017 Nov 2.
6
Pulseq: A rapid and hardware-independent pulse sequence prototyping framework.
Magn Reson Med. 2017 Apr;77(4):1544-1552. doi: 10.1002/mrm.26235. Epub 2016 Jun 7.
7
ISMRM Raw data format: A proposed standard for MRI raw datasets.
Magn Reson Med. 2017 Jan;77(1):411-421. doi: 10.1002/mrm.26089. Epub 2016 Jan 29.
8
Image reconstruction using a gradient impulse response model for trajectory prediction.
Magn Reson Med. 2016 Jul;76(1):45-58. doi: 10.1002/mrm.25841. Epub 2015 Jul 27.
9
scikit-image: image processing in Python.
PeerJ. 2014 Jun 19;2:e453. doi: 10.7717/peerj.453. eCollection 2014.
10
ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA.
Magn Reson Med. 2014 Mar;71(3):990-1001. doi: 10.1002/mrm.24751.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验