Suppr超能文献

用于广泛MRI模拟的GPU加速JEMRIS

Gpu-accelerated JEMRIS for extensive MRI simulations.

作者信息

Nurdinova Aizada, Ruschke Stefan, Gestrich Michael, Stelter Jonathan, Karampinos Dimitrios C

机构信息

Department of Radiology, Stanford University, Stanford, USA.

Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.

出版信息

MAGMA. 2025 Sep 4. doi: 10.1007/s10334-025-01281-z.

Abstract

PURPOSE

To enable accelerated Bloch simulations by enhancing the open-source multi-purpose MRI simulation tool JEMRIS with graphic processing units (GPU) parallelization.

METHODS

A GPU-compatible version of JEMRIS was built by shifting the computationally expensive parallelizable processes to the GPU to benefit from heterogeneous computing and by adding asynchronous communication and mixed precision support. With key classes reimplemented in CUDA C++, the developed GPU-JEMRIS framework was tested on simulations of common MRI artifacts in numerical phantoms. The accuracy and performance of the GPU-parallelized JEMRIS simulator were benchmarked against the CPU-parallelized JEMRIS and GPU-enabled KomaMRI.jl simulators. Additionally, an example of liver fat quantification errors due to respiratory motion artifacts was simulated in a multi-echo gradient echo (MEGRE) acquisition.

RESULTS

The GPU-accelerated JEMRIS achieved speed-up factors 3-12 and 7-65 using double and single precision numerical integrators, respectively, when compared to the parallelized CPU implementation in the investigated numerical phantom scenarios. While double precision GPU simulations negligibly differ (<0.1% NRMSE) from double precision CPU simulations, the single precision simulations still present small errors of up to 1% k-space signal NRMSE. The developed a GPU extension enabled computationally demanding motion simulations with a multi-species abdominal phantom and a MEGRE sequence, showing significant and spatially varying fat fraction bias in the presence of motion.

CONCLUSION

By solving the Bloch equations in parallel on device, accelerated Bloch simulations can be performed on any GPU-equipped device with CUDA support using the developed GPU-JEMRIS. This would enable further insights into more realistic large spin pool MR simulations such as experiments with large multi-dimensional phantoms, multiple chemical species and dynamic effects.

摘要

目的

通过利用图形处理单元(GPU)并行化增强开源多用途MRI模拟工具JEMRIS,实现加速布洛赫模拟。

方法

构建了一个与GPU兼容的JEMRIS版本,将计算成本高的可并行化进程转移到GPU上,以受益于异构计算,并添加了异步通信和混合精度支持。通过在CUDA C++中重新实现关键类,在数值体模中对常见MRI伪影的模拟测试了所开发的GPU-JEMRIS框架。将GPU并行化的JEMRIS模拟器的准确性和性能与CPU并行化的JEMRIS和支持GPU的KomaMRI.jl模拟器进行了基准测试。此外,在多回波梯度回波(MEGRE)采集中模拟了由于呼吸运动伪影导致的肝脏脂肪定量误差的示例。

结果

在研究的数值体模场景中,与并行化的CPU实现相比,GPU加速的JEMRIS分别使用双精度和单精度数值积分器实现了3至12倍和7至65倍的加速因子。虽然双精度GPU模拟与双精度CPU模拟的差异可忽略不计(<0.1% NRMSE),但单精度模拟仍存在高达1% k空间信号NRMSE的小误差。所开发的GPU扩展能够使用多物种腹部体模和MEGRE序列进行计算要求高的运动模拟,在存在运动的情况下显示出显著且空间变化的脂肪分数偏差。

结论

通过在设备上并行求解布洛赫方程,使用所开发的GPU-JEMRIS可以在任何支持CUDA的配备GPU的设备上进行加速布洛赫模拟。这将有助于进一步深入了解更现实的大自旋池MR模拟,例如使用大型多维体模、多种化学物质和动态效应的实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验