Suppr超能文献

高效电合成用于生物医学应用的一氧化氮。

Highly Efficient Electrosynthesis of Nitric Oxide for Biomedical Applications.

机构信息

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Angew Chem Int Ed Engl. 2022 Oct 10;61(41):e202210980. doi: 10.1002/anie.202210980. Epub 2022 Aug 31.

Abstract

Nitric oxide (NO) constitutes one of the most versatile therapeutics for biomedical applications. The efficient and on-demand NO generation essentially dictates its concentration dependent therapeutic activity. Here, we report an electrochemical system employing a rationally designed single-iron atom based biomimetic catalyst (i.e., Fe SAC), for high-efficient and controlled NO generation. The Fe SAC shows superior catalytic ability in electrochemical reduction of nitrite, with maximal NO generation rate achieving 2.1 μM (min μg) . Theoretical studies suggest the significant decrease of Gibbs-free energy of NO adsorption on single-iron atom accounts for its high catalytic efficiency. Moreover, ample amount of NO can be controllably generated in a potential dependent manner. For antibacterial application, the generated NO overwhelmingly disrupts both gram-negative and gram-positive strains, highlighting a great promise to expedite NO research in both basic and applied sciences.

摘要

一氧化氮 (NO) 是生物医学应用中最通用的治疗药物之一。高效且按需产生的 NO 从本质上决定了其浓度依赖性的治疗活性。在这里,我们报告了一种电化学系统,该系统采用了一种合理设计的基于单铁原子的仿生催化剂(即 Fe SAC),用于高效和可控的 NO 生成。Fe SAC 在亚硝酸盐的电化学还原中表现出优异的催化能力,最大 NO 生成速率达到 2.1 μM·(min·μg)−1。理论研究表明,NO 吸附在单铁原子上的吉布斯自由能显著降低,这是其高催化效率的原因。此外,NO 的生成可以以依赖于电势的方式进行可控地生成。在抗菌应用中,生成的 NO 会彻底破坏革兰氏阴性和革兰氏阳性菌,这突出表明有望加速基础科学和应用科学中对 NO 的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验