Department of Bioscience, Kyushu Dental College, Kitakyushu 803-8580, Japan.
Chem Res Toxicol. 2012 Jan 13;25(1):207-15. doi: 10.1021/tx200438q. Epub 2011 Dec 28.
Iron(III) ingested as a food component or supplement for iron deficiencies can react with salivary SCN(-) to produce Fe(SCN)(2+) and can be reduced to iron(II) by ascorbic acid in the stomach. Iron(II) generated in the stomach can react with salivary nitrite and SCN(-) to produce nitric oxide (NO) and FeSCN(+), respectively. The purpose of this investigation is to make clear the reactions among nitrite, SCN(-), iron ions, and ascorbic acid under conditions simulating the mixture of saliva and gastric juice. Iron(II)-dependent reduction of nitrite to NO was enhanced by SCN(-) in acidic buffer solutions, and the oxidation product of iron(II) reacted with SCN(-) to produce Fe(SCN)(2+). Almost all of the NO produced was autoxidized to N(2)O(3) under aerobic conditions. Iron(II)-dependent production of NO was also observed in acidified saliva. Under anaerobic conditions, NO transformed Fe(SCN)(2+) and FeSCN(+) to Fe(SCN)NO(+) in acidic buffer solutions. Fe(SCN)NO(+) was also formed under aerobic conditions when excess ascorbic acid was added to iron(II)/nitrite/SCN(-) systems in acidic buffer solutions and acidified saliva. The Fe(SCN)NO(+) formed was transformed to Fe(SCN)(2+) and iron(III) at pH 2.0 and pH 7.4, respectively, by O(2). Salivary glycoproteins could complex with iron(III) in the stomach preventing the formation of Fe(SCN)(2+). Ascorbic acid reduced iron(III) to iron(II) to react with nitrite and SCN(-) as described above. The above results suggest (i) that iron(II) can have toxic effects on the stomach through the formation of reactive nitrogen oxide species from NO when supplemented without ascorbic acid and through the formation of both reactive nitrogen oxide species and Fe(SCN)NO(+) when supplemented with ascorbic acid, and (ii) that the toxic effects of iron(III) seemed to be smaller than and similar to those of iron(II) when supplemented without and with ascorbic acid, respectively. Possible mechanisms that cause oxidative stress on the stomach through Fe(SCN)NO(+) are discussed.
铁(III)作为食物成分或铁缺乏症的补充剂被摄入后,可与唾液中的 SCN(-)反应生成 Fe(SCN)(2+),并可被胃中的抗坏血酸还原为铁(II)。胃中生成的铁(II)可与唾液中的亚硝酸盐和 SCN(-)反应,分别生成一氧化氮 (NO)和 FeSCN(+)。本研究旨在澄清在模拟唾液和胃液混合物条件下亚硝酸盐、SCN(-)、铁离子和抗坏血酸之间的反应。在酸性缓冲溶液中,SCN(-)增强了铁(II)对亚硝酸盐的依赖性还原生成 NO,而铁(II)的氧化产物与 SCN(-)反应生成 Fe(SCN)(2+)。在有氧条件下,几乎所有生成的 NO 都被自动氧化为 N(2)O(3)。在酸化的唾液中也观察到铁(II)依赖性生成 NO。在厌氧条件下,NO 将 Fe(SCN)(2+)和 FeSCN(+)转化为酸性缓冲溶液中的 Fe(SCN)NO(+)。当向酸性缓冲溶液和酸化的唾液中的铁(II)/亚硝酸盐/SCN(-)系统中添加过量抗坏血酸时,也会在有氧条件下形成 Fe(SCN)NO(+)。形成的 Fe(SCN)NO(+)在 pH 2.0 和 pH 7.4 下分别被 O(2)转化为 Fe(SCN)(2+)和铁(III)。唾液糖蛋白可与胃中的铁(III)结合,防止 Fe(SCN)(2+)的形成。抗坏血酸将铁(III)还原为铁(II),如上所述与亚硝酸盐和 SCN(-)反应。上述结果表明:(i) 当铁(II)补充物中不含抗坏血酸时,通过 NO 形成活性氮氧化物会对胃产生毒性作用,而当补充物中含有抗坏血酸时,除形成活性氮氧化物外,还会形成 Fe(SCN)NO(+),对胃产生毒性作用;(ii) 当铁(III)补充物中不含或含有抗坏血酸时,其毒性作用似乎小于和类似于铁(II)。讨论了通过 Fe(SCN)NO(+)引起胃氧化应激的可能机制。