Wang Gang, Chen Zhe, Wang Tao, Wang Dingsheng, Mao Junjie
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, P. R. China.
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202210789. doi: 10.1002/anie.202210789. Epub 2022 Aug 29.
The light-driven CO reduction to multi-carbon products is especially meaningful, while the low efficiency of multi-electron transfer and sluggish C-C coupling greatly hinder its development. Herein, we report a photocatalyst comprising of P and Cu dual sites anchored on graphitic carbon nitride (P/Cu SAs@CN), which achieves a high C H evolution rate of 616.6 μmol g h in reducing CO to hydrocarbons. The detailed spectroscopic characterizations identify the formation of charge-enriched Cu sites, where the isolated P atoms serve as hole capture sites during photocatalysis. Theoretical simulations combined with in situ FTIR measurement reveal a kinetically feasible process for the formation of C-C coupling intermediate (*OC-COH) and confirm the favorable production of C H on the P/Cu SAs@CN photocatalyst. This work offers new insights into the photocatalyst design with atomic precision toward highly efficient photocatalytic CO conversion to high value-added carbon products.
光驱动将CO还原为多碳产物具有特别重要的意义,然而多电子转移效率低和C-C偶联缓慢极大地阻碍了其发展。在此,我们报道了一种由锚定在石墨相氮化碳上的P和Cu双位点组成的光催化剂(P/Cu SAs@CN),其在将CO还原为碳氢化合物时实现了616.6 μmol g⁻¹ h⁻¹的高CH₄析出速率。详细的光谱表征确定了富电荷Cu位点的形成,其中孤立的P原子在光催化过程中作为空穴捕获位点。理论模拟与原位FTIR测量相结合揭示了形成C-C偶联中间体(*OC-COH)的动力学可行过程,并证实了P/Cu SAs@CN光催化剂上CH₄的良好生成。这项工作为具有原子精度的光催化剂设计提供了新的见解,以实现高效光催化CO转化为高附加值碳产物。