文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent advances and developments in solar-driven photothermal catalytic CO reduction into multicarbon (C) products.

作者信息

Wu Xiuting, Zhang Senlin, Ning Shangbo, Yang Chuanyun, Li Ling, Tang Linjun, Wang Jing, Liu Ruixiang, Yin Xingyu, Zhu Ying, Chen Shaohua, Ye Jinhua

机构信息

Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China

Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China

出版信息

Chem Sci. 2025 Feb 15;16(11):4568-4594. doi: 10.1039/d5sc00330j. eCollection 2025 Mar 12.


DOI:10.1039/d5sc00330j
PMID:39991564
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11841621/
Abstract

Solar-driven catalytic conversion of carbon dioxide (CO) into value-added C chemicals and fuels has attracted significant attention over the past decades, propelled by urgent environmental and energy demands. However, the catalytic reduction of CO continues to face significant challenges due to inherently slow reduction kinetics. This review traces the historical development and current state of photothermal CO reduction, detailing the mechanisms by which CO is transformed into C products. A key focus is on catalyst design, emphasizing surface defect engineering, bifunctional active site and co-catalyst coupling to enhance the efficiency and selectivity of solar-driven C synthesis. Key reaction pathways to both C and C products are discussed, ranging from CO, CH and methanol (CHOH) synthesis to the production of C products such as C hydrocarbons, ethanol, acetic acid, and various carbonates. Notably, the advanced synthesis of C hydrocarbons exemplifies the remarkable potential of photothermal technologies to effectively upgrade CO-derived products, thereby delivering sustainable liquid fuels. This review provides a comprehensive overview of fundamental mechanisms, recent breakthroughs, and pathway optimizations, culminating in valuable insights for future research and industrial-scale prospect of photothermal CO reduction.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/db9f4c7f9030/d5sc00330j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/40fddd1feed4/d5sc00330j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/9b1c31471ae8/d5sc00330j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/40de6dfb9b03/d5sc00330j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/86a8081e3841/d5sc00330j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/810aa5e3cc1d/d5sc00330j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/0bd3086ababe/d5sc00330j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/296bcaf17da2/d5sc00330j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/8f4fd247e328/d5sc00330j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/0d4ab2851aa8/d5sc00330j-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/a5bf6b7a0678/d5sc00330j-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/d59c82aca4f9/d5sc00330j-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/8106ea42c011/d5sc00330j-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/a62236762cbe/d5sc00330j-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/7f76df683a3a/d5sc00330j-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/8b1763c5c742/d5sc00330j-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/9fc3214f2ebd/d5sc00330j-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/1c9fa5614f39/d5sc00330j-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/5341a7ac6708/d5sc00330j-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/d4bdcf59150e/d5sc00330j-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/7db91c3bdb78/d5sc00330j-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/4cadc9231691/d5sc00330j-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/a1bf61346610/d5sc00330j-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/d27a0cd19a57/d5sc00330j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/ed6076370916/d5sc00330j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/db9f4c7f9030/d5sc00330j-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/40fddd1feed4/d5sc00330j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/9b1c31471ae8/d5sc00330j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/40de6dfb9b03/d5sc00330j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/86a8081e3841/d5sc00330j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/810aa5e3cc1d/d5sc00330j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/0bd3086ababe/d5sc00330j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/296bcaf17da2/d5sc00330j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/8f4fd247e328/d5sc00330j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/0d4ab2851aa8/d5sc00330j-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/a5bf6b7a0678/d5sc00330j-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/d59c82aca4f9/d5sc00330j-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/8106ea42c011/d5sc00330j-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/a62236762cbe/d5sc00330j-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/7f76df683a3a/d5sc00330j-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/8b1763c5c742/d5sc00330j-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/9fc3214f2ebd/d5sc00330j-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/1c9fa5614f39/d5sc00330j-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/5341a7ac6708/d5sc00330j-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/d4bdcf59150e/d5sc00330j-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/7db91c3bdb78/d5sc00330j-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/4cadc9231691/d5sc00330j-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/a1bf61346610/d5sc00330j-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/d27a0cd19a57/d5sc00330j-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/ed6076370916/d5sc00330j-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772e/11901115/db9f4c7f9030/d5sc00330j-p3.jpg

相似文献

[1]
Recent advances and developments in solar-driven photothermal catalytic CO reduction into multicarbon (C) products.

Chem Sci. 2025-2-15

[2]
Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance.

ACS Nano. 2023-2-14

[3]
Selectivity Control by Relay Catalysis in CO and CO Hydrogenation to Multicarbon Compounds.

Acc Chem Res. 2024-3-5

[4]
Photocatalytic nanomaterials and their implications towards biomass conversion for renewable chemical and fuel production.

Nanoscale Adv. 2024-9-30

[5]
Electrochemical CO reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.

Innovation (Camb). 2025-1-17

[6]
Copper Cobalt Selenide as a Bifunctional Electrocatalyst for the Selective Reduction of CO to Carbon-Rich Products and Alcohol Oxidation.

ACS Appl Mater Interfaces. 2023-3-9

[7]
Catalyst Design for Electrochemical Reduction of CO to Multicarbon Products.

Small Methods. 2021-10

[8]
Synthesis of C Chemicals from CO and H via C-C Bond Formation.

Acc Chem Res. 2021-5-18

[9]
Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO to C Conversion.

Adv Sci (Weinh). 2025-4

[10]
Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO Photoreduction toward C Products.

Acc Chem Res. 2023-9-19

引用本文的文献

[1]
Research and Developments of Heterogeneous Catalytic Technologies.

Molecules. 2025-8-5

[2]
Tailoring dual-hydrophobic microenvironment for tandem CO/CO feedstock to enhance CO electroreduction on Cu-based catalysts.

Chem Sci. 2025-6-27

本文引用的文献

[1]
A Highly Active Molybdenum Carbide Catalyst with Dynamic Carbon Flux for Reverse Water-Gas Shift Reaction.

Angew Chem Int Ed Engl. 2025-2-3

[2]
Irreversible Lattice Expansion Effects in Nanoscale Indium Oxide for CO Hydrogenation Catalysis.

J Am Chem Soc. 2024-12-11

[3]
Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane.

J Am Chem Soc. 2024-8-28

[4]
Anchoring Cs Ions on Carbon Vacancies for Selective CO Electroreduction to CO at High Current Densities in Membrane Electrode Assembly Electrolyzers.

Angew Chem Int Ed Engl. 2024-10-1

[5]
Boosting photo-thermal co-catalysis CO methanation by tuning interface electron transfer via Mott-Schottky heterojunction effect.

J Colloid Interface Sci. 2024-10-15

[6]
Atomically Dispersed Metal Catalysts for the Conversion of CO into High-Value C Chemicals.

Adv Mater. 2024-9

[7]
Photothermal CO Catalysis toward the Synthesis of Solar Fuel: From Material and Reactor Engineering to Techno-Economic Analysis.

Adv Mater. 2025-1

[8]
Dimethyl Carbonate Synthesis from CO over CeO with Electron-Enriched Lattice Oxygen Species.

Angew Chem Int Ed Engl. 2024-5-6

[9]
Wettability Engineering of Solar Methanol Synthesis.

J Am Chem Soc. 2023-12-6

[10]
Carbon-Carbon Bond Cleavage for Late-Stage Functionalization.

Chem Rev. 2023-11-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索