Suppr超能文献

RPCA-AENet: Clutter Suppression and Simultaneous Stationary Scene and Moving Targets Imaging in the Presence of Motion Errors.

作者信息

Pu Wei, Bao Yi

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2339-2352. doi: 10.1109/TNNLS.2022.3189997. Epub 2024 Feb 5.

Abstract

Clutter suppression and ground moving target imaging in synthetic aperture radar (SAR) system have been receiving increasing attention for both civilian and military applications. The problem of clutter suppression and ground moving target imaging in practical applications is much more challenging due to the motion error of the radar platform. In this article, we focus on the problems of clutter suppression and simultaneous stationary and moving target imaging in the presence of motion errors. Specifically, we propose a robust principal component analysis autoencoder network (RPCA-AENet) in a single-channel SAR system. In RPCA-AENet, the encoder transforms the SAR echo into imaging results of stationary scene and ground moving targets, and the decoder regenerates the SAR echo using the obtained imaging results. The encoder is designed by the unfolded robust principal component analysis (RPCA), while the decoder is formulated into two dense layers and one additional layer. Joint reconstruction loss, entropy loss, and measurement distance loss are utilized to guide the training of the RPCA-AENet. Notably, the algorithm operates in a totally self-supervised form and requires no other labeled SAR data. The methodology was tested on numerical SAR data. These tests show that the proposed architecture outperforms other state-of-the-art methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验