Suppr超能文献

基于多特征时间卷积注意力网络的 sEMG 连续估计人体关节角度。

Continuous Estimation of Human Joint Angles From sEMG Using a Multi-Feature Temporal Convolutional Attention-Based Network.

出版信息

IEEE J Biomed Health Inform. 2022 Nov;26(11):5461-5472. doi: 10.1109/JBHI.2022.3198640. Epub 2022 Nov 10.

Abstract

Intention recognition based on surface electromyography (sEMG) signals is pivotal in human-machine interaction (HMI), where continuous motion estimation with high accuracy has been the challenge. The convolutional neural network (CNN) possesses excellent feature extraction capability. Still, it is difficult for ordinary CNN to explore the dependencies of time-series data, so most researchers adopt the recurrent neural network or its variants (e.g., LSTM) for motion estimation tasks. This paper proposes a multi-feature temporal convolutional attention-based network (MFTCAN) to recognize joint angles continuously. First, we recruited ten subjects to accomplish the signal acquisition experiments in different motion patterns. Then, we developed a joint training mechanism that integrates MFTCAN with commonly used statistical algorithms, and the integrated architectures were named MFTCAN-KNR, MFTCAN-SVR and MFTCAN-LR. Last, we utilized two performance indicators (RMSE and [Formula: see text]) to evaluate the effect of different methods. Moreover, we further validated the performance of the proposed method on the open dataset (Ninapro DB2). When evaluating on the original dataset, the average RMSE of the estimations obtained by MFTCAN-KNR is 0.14, which is significantly less than the results obtained by LSTM (0.20) and BP (0.21). The average [Formula: see text] of the estimations obtained by MFTCAN-KNR is 0.87, indicating the anti-disturbance ability of the architecture. Moreover, MFTCAN-KNR also achieves high performance when evaluating on the open dataset. The proposed methods can effectively accomplish the task of motion estimation, allowing further implementations in the human-exoskeleton interaction systems.

摘要

基于表面肌电信号(sEMG)的意图识别在人机交互(HMI)中至关重要,其中连续的高精度运动估计一直是一个挑战。卷积神经网络(CNN)具有出色的特征提取能力。然而,普通的 CNN 很难探索时间序列数据的依赖关系,因此大多数研究人员采用循环神经网络或其变体(例如 LSTM)来进行运动估计任务。本文提出了一种基于多特征时间卷积注意力的网络(MFTCAN),以连续地识别关节角度。首先,我们招募了十位受试者在不同的运动模式下完成信号采集实验。然后,我们开发了一种联合训练机制,将 MFTCAN 与常用的统计算法相结合,所得到的集成架构分别命名为 MFTCAN-KNR、MFTCAN-SVR 和 MFTCAN-LR。最后,我们使用了两个性能指标(RMSE 和 [Formula: see text])来评估不同方法的效果。此外,我们还在公开数据集(Ninapro DB2)上进一步验证了所提出方法的性能。在原始数据集上进行评估时,MFTCAN-KNR 得到的估计值的平均 RMSE 为 0.14,明显小于 LSTM(0.20)和 BP(0.21)的结果。MFTCAN-KNR 得到的估计值的平均 [Formula: see text] 为 0.87,表明了该架构的抗干扰能力。此外,MFTCAN-KNR 在评估公开数据集时也取得了很高的性能。所提出的方法可以有效地完成运动估计任务,从而可以在人机外骨骼交互系统中进一步实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验