Wang Ze, Wong Chi Man, Rosa Agostinho, Qian Tao, Jung Tzyy-Ping, Wan Feng
IEEE Trans Biomed Eng. 2023 Feb;70(2):603-615. doi: 10.1109/TBME.2022.3198639. Epub 2023 Jan 19.
Brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) require extensive and costly calibration to achieve high performance. Using transfer learning to re-use existing calibration data from old stimuli is a promising strategy, but finding commonalities in the SSVEP signals across different stimuli remains a challenge.
This study presents a new perspective, namely time-frequency-joint representation, in which SSVEP signals corresponding to different stimuli can be synchronized, and thus can emphasize common components. According to this time-frequency-joint representation, an adaptive decomposition technique based on the multi-channel adaptive Fourier decomposition (MAFD) is proposed to adaptively decompose SSVEP signals of different stimuli simultaneously. Then, common components can be identified and transferred across stimuli.
A simulation study on public SSVEP datasets demonstrates that the proposed stimulus-stimulus transfer method has the ability to extract and transfer these common components across stimuli. By using calibration data from eight source stimuli, the proposed stimulus-stimulus transfer method can generate SSVEP templates of other 32 target stimuli. It boosts the ITR of the stimulus-stimulus transfer based recognition method from 95.966 bits/min to 123.684 bits/min.
By extracting and transfer common components across stimuli in the proposed time-frequency-joint representation, the proposed stimulus-stimulus transfer method produces good classification performance without requiring calibration data of target stimuli.
This study provides a synchronization standpoint to analyze and model SSVEP signals. In addition, the proposed stimulus-stimulus method shortens the calibration time and thus improve comfort, which could facilitate real-world applications of SSVEP-based BCIs.
基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)需要进行广泛且昂贵的校准才能实现高性能。利用迁移学习重新使用来自旧刺激的现有校准数据是一种很有前景的策略,但在不同刺激的SSVEP信号中寻找共性仍然是一个挑战。
本研究提出了一种新的视角,即时频联合表示,其中对应于不同刺激的SSVEP信号可以同步,从而可以突出共同成分。根据这种时频联合表示,提出了一种基于多通道自适应傅里叶分解(MAFD)的自适应分解技术,以同时自适应分解不同刺激的SSVEP信号。然后,可以识别并跨刺激转移共同成分。
对公共SSVEP数据集的模拟研究表明,所提出的刺激-刺激转移方法有能力跨刺激提取和转移这些共同成分。通过使用来自八个源刺激的校准数据,所提出的刺激-刺激转移方法可以生成其他32个目标刺激的SSVEP模板。它将基于刺激-刺激转移的识别方法的信息传输率从95.966比特/分钟提高到123.684比特/分钟。
通过在所提出的时频联合表示中跨刺激提取和转移共同成分,所提出的刺激-刺激转移方法在不需要目标刺激校准数据的情况下产生了良好的分类性能。
本研究提供了一个同步视角来分析和建模SSVEP信号。此外,所提出的刺激-刺激方法缩短了校准时间,从而提高了舒适度,这有助于基于SSVEP的BCI在现实世界中的应用。