College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
J Neurosci Methods. 2022 Sep 1;379:109674. doi: 10.1016/j.jneumeth.2022.109674. Epub 2022 Jul 13.
Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli.
To employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli.
Under the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively.
FB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition.
FB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks.
稳态视觉诱发电位(SSVEP)是脑机接口(BCI)的一种常见范式。最近,深度神经网络(DNN)已被用于 SSVEP 目标识别。然而,当前的 DNN 模型不能充分提取 SSVEP 谐波分量的信息,并且忽略了非目标刺激的影响。
为了利用多个子带和非目标刺激数据的信息,我们提出了一种用于 SSVEP 目标检测的 DNN 模型,即 FB-EEGNet,它融合了多个神经网络的特征。此外,我们为每个样本设计了一个多标签,并通过多刺激优化 FB-EEGNet 的参数,以纳入来自非目标刺激的信息。
在个体特定条件下,FB-EEGNet 在公共的 12 目标数据集和我们的实验 9 目标数据集上,在 0.7 s 的时间窗口内分别实现了 76.75%(50.70 位/分钟)和 89.14%(70.45 位/分钟)的平均分类准确率(信息传输率(ITR))。在跨个体条件下,FB-EEGNet 在公共数据集和实验数据集上分别在 1 s 的时间窗口内实现了 81.72%(67.99 位/分钟)和 92.15%(76.12 位/分钟)的平均准确率(ITR)。
FB-EEGNet 在个体相关和个体无关的 SSVEP 目标识别方面均优于 CCNN、EEGNet、CCA 和 FBCCA。
FB-EEGNet 可以有效地从多个子带和跨刺激目标中提取信息,为使用神经网络提取 SSVEP 中的深度特征提供了一种有前途的方法。