Suppr超能文献

SimpleMKKM:简单多核 K-Means。

SimpleMKKM: Simple Multiple Kernel K-Means.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):5174-5186. doi: 10.1109/TPAMI.2022.3198638. Epub 2023 Mar 7.

Abstract

We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we equivalently rewrite the minimization-maximization formulation as a minimization of an optimal value function, prove its differenentiablity, and design a reduced gradient descent algorithm to decrease it. Furthermore, we prove that the resultant solution of SimpleMKKM is the global optimum. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. After that, we develop extensive experiments to investigate the proposed SimpleMKKM from the perspectives of clustering accuracy, advantage on the formulation and optimization, variation of the learned consensus clustering matrix with iterations, clustering performance with varied number of samples and base kernels, analysis of the learned kernel weight, the running time and the global convergence. The experimental study demonstrates the effectiveness of the proposed SimpleMKKM by considerably and consistently outperforming state of the art multiple kernel clustering alternatives. In addition, the ablation study shows that the improved clustering performance is contributed by both the novel formulation and new optimization. Our work provides a more effective approach to integrate multi-view data for clustering, and this could trigger novel research on multiple kernel clustering. The source code and data for SimpleMKKM are available at https://github.com/xinwangliu/SimpleMKKMcodes/.

摘要

我们提出了一种简单而有效的多核聚类算法,称为简单多核 K-means(SimpleMKKM)。它将广泛使用的监督核对准准则扩展到多核聚类中。我们的准则是在核系数和聚类划分矩阵中不可处理的最小化-最大化问题。为了优化它,我们将最小化-最大化公式等效地重写为最优值函数的最小化,并证明其可微性,并设计一个减少梯度下降算法来减小它。此外,我们证明了 SimpleMKKM 的结果解是全局最优解。我们从聚类泛化误差的角度理论分析了 SimpleMKKM 的性能。之后,我们进行了广泛的实验,从聚类精度、公式和优化优势、学习共识聚类矩阵随迭代的变化、具有不同样本和基础核的聚类性能、学习核权重的分析、运行时间和全局收敛性等方面对提出的 SimpleMKKM 进行了研究。实验研究表明,通过大大优于最先进的多核聚类替代方案,提出的 SimpleMKKM 是有效的。此外,消融研究表明,改进的聚类性能是由新的公式和新的优化共同贡献的。我们的工作为整合多视图数据进行聚类提供了一种更有效的方法,并可能引发对多核聚类的新研究。SimpleMKKM 的源代码和数据可在 https://github.com/xinwangliu/SimpleMKKMcodes/ 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验